
GNU Octave

A high-level interactive language for numerical computations

Edition 3 for Octave version 2.0.5

February 1997

John W. Eaton

Copyright
c
 1996, 1997 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 2.0.5

of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the

copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the con-

ditions for verbatim copying, provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-

guage, under the same conditions as for modi�ed versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library

manuals, published by the Free Software Foundation, 59 Temple Place|Suite 330, Boston,

MA 02111{1307, USA.

Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level

textbook on chemical reactor design being written by James B. Rawlings of the University

of Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another `courseware' package with limited

utility beyond the classroom. Although our initial goals were somewhat vague, we knew

that we wanted to create something that would enable students to solve realistic problems,

and that they could use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,

because that is the computer language of engineering, but every time we have tried that, the

students have spent far too much time trying to �gure out why their Fortran code crashes

and not enough time learning about chemical engineering. With Octave, most students pick

up the basics quickly, and are using it con�dently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in

several other undergraduate and graduate courses in the Chemical Engineering Department

at the University of Texas, and the math department at the University of Texas has been

using it for teaching di�erential equations and linear algebra as well. If you �nd it useful,

please let us know. We are always interested to �nd out how Octave is being used in other

places.

Virtually everyone thinks that the name Octave has something to do with music, but it

is actually the name of a former professor of mine who wrote a famous textbook on chemical

reaction engineering, and who was also well known for his ability to do quick `back of the

envelope' calculations. We hope that this software will make it possible for many people to

do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU

General Public License (see Appendix E [Copying], page 225) as described at the beginning

of this manual. You are also encouraged to help make Octave more useful by writing and

contributing additional functions for it, and by reporting any problems you may have.

Acknowledgements

Many people have already contributed to Octave's development. In addition to John

W. Eaton, the following people have helped write parts of Octave or helped out in various

other ways.

� Thomas Baier hbaier@ci.tuwien.ac.atiwrote the original versions of popen, pclose,

execute, sync_system, and async_system.

� Karl Berry hkarl@cs.umb.edui wrote the kpathsea library that allows Octave to re-

cursively search directory paths for function and script �les.

� Georg Beyerle hgbeyerle@awi-potsdam.dei contributed code to save values in Mat-

lab's `.mat'-�le format, and has provided many useful bug reports and suggestions.

� John Campbell hjcc@bevo.che.wisc.eduiwrote most of the �le and C-style input and

output functions.

2 GNU Octave

� Brian Fox hbfox@gnu.ai.mit.edui wrote the readline library used for command his-

tory editing, and the portion of this manual that documents it.

� Klaus Gebhardt hgebhardt@crunch.ikp.physik.th-darmstadt.dei ported Octave to

OS/2 and worked with Michel Juillard hjuillard@msh-paris.fri on the port to DOS.

� A. Scottedward Hodel hA.S.Hodel@eng.auburn.edui contributed a number of func-

tions including expm, qzval, qzhess, syl, lyap, and balance.

� Kurt Hornik hKurt.Hornik@ci.tuwien.ac.ati provided the corrcoef, cov, fftconv,

fftfilt, gcd, lcd, kurtosis, null, orth, poly, polyfit, roots, and skewness func-

tions, supplied documentation for these and numerous other functions, rewrote the

Emacs mode for editing Octave code and provided its documentation, and has helped

tremendously with testing. He has also been a constant source of new ideas for im-

proving Octave.

� Phil Johnson hjohnsonp@nicco.sscnet.ucla.edui has helped to make Linux releases

available.

� Michel Juillard hjuillard@msh-paris.fri ported Octave to DOS systems.

� Friedrich Leisch hleisch@ci.tuwien.ac.ati provided the mahalanobis function.

� Ken Neighbors hwkn@leland.stanford.edui has provided many useful bug reports

and comments on Matlab compatibility.

� Rick Niles hniles@axp745.gsfc.nasa.govi rewrote Octave's plotting functions to add

line styles and the ability to specify an unlimited number of lines in a single call. He

also continues to track down odd incompatibilities and bugs.

� Mark Odegard hmeo@sugarland.unocal.comi provided the initial implementation of

fread, fwrite, feof, and ferror.

� Tony Richardson htony@guts.biomed.uakron.edui wrote Octave's image processing

functions as well as most of the original polynomial functions.

� R. Bruce Tenison hBruce.Tenison@eng.auburn.edui wrote the hess and schur func-

tions.

� Teresa Twaroch htwaroch@ci.tuwien.ac.ati provided the functions gls and ols.

� Andreas Weingessel hAndreas.Weingessel@ci.tuwien.ac.ati wrote the audio func-

tions lin2mu, loadaudio, mu2lin, playaudio, record, saveaudio, and setaudio.

� Fook Fah Yap hffy@eng.cam.ac.uki provided the fft and ifft functions and valuable

bug reports for early versions.

Special thanks to the following people and organizations for supporting the development

of Octave:

� Digital Equipment Corporation, for an equipment grant as part of their External Re-

search Program.

� Sun Microsystems, Inc., for an Academic Equipment grant.

� International Business Machines, Inc., for providing equipment as part of a grant to

the University of Texas College of Engineering.

� Texaco Chemical Company, for providing funding to continue the development of this

software.

Preface 3

� The University of Texas College of Engineering, for providing a Challenge for Excellence

Research Supplement, and for providing an Academic Development Funds grant.

� The State of Texas, for providing funding through the Texas Advanced Technology

Program under Grant No. 003658-078.

� Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

� James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-

ical Engineering.

� Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and used

to produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.

Perhaps the most important way to contribute is to write high-quality code for solving new

problems, and to make your code freely available for others to use.

If you �nd Octave useful, consider providing additional funding to continue its develop-

ment. Even a modest amount of additional funding could make a signi�cant di�erence in

the amount of time that is available for development and support.

If you cannot provide funding or contribute code, you can still help make Octave better

and more reliable by reporting any bugs you �nd and by o�ering suggestions for ways to

improve Octave. See Appendix B [Trouble], page 201, for tips on how to write useful bug

reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute

it on certain conditions. Octave is not in the public domain. It is copyrighted and there are

restrictions on its distribution, but the restrictions are designed to ensure that others will

have the same freedom to use and redistribute Octave that you have. The precise conditions

can be found in the GNU General Public License that comes with Octave and that also

appears in Appendix E [Copying], page 225.

Octave is available on CD-ROM with various collections of other free software, and

from the Free Software Foundation. Ordering a copy of Octave from the Free Software

Foundation helps to fund the development of more free software. For more information,

write to

Free Software Foundation

59 Temple Place|Suite 330

Boston, MA 02111{1307

USA

Octave is also available on the Internet from `ftp://ftp.che.wisc.edu/pub/octave',

and additional information is available from `http://www.che.wisc.edu/octave'.

4 GNU Octave

Chapter 1: A Brief Introduction to Octave 5

1 A Brief Introduction to Octave

This manual documents how to run, install and port GNU Octave, and how to report

bugs.

GNU Octave is a high-level language, primarily intended for numerical computations.

It provides a convenient command line interface for solving linear and nonlinear problems

numerically, and for performing other numerical experiments. It may also be used as a

batch-oriented language.

GNU Octave is also freely redistributable software. You may redistribute it and/or mod-

ify it under the terms of the GNU General Public License as published by the Free Software

Foundation. The GPL is included in this manual in Appendix E [Copying], page 225.

This document corresponds to Octave version 2.0.5.

1.1 Running Octave

On most systems, the way to invoke Octave is with the shell command `octave'. Octave

displays an initial message and then a prompt indicating it is ready to accept input. You

can begin typing Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (usually

written C-c for short). C-c gets its name from the fact that you type it by holding down

h

CTRL

i

and then pressing

h

c

i

. Doing this will normally return you to Octave's prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP

signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave's features in detail, but before doing that,

it might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning

Octave by using it. Lines marked with `octave:13>' are lines you type, ending each with

a carriage return. Octave will respond with an answer, or by displaying a graph.

Creating a Matrix

To create a new matrix and store it in a variable so that it you can refer to it later, type

the command

octave:1> a = [1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Ending a command

with a semicolon tells Octave to not print the result of a command. For example

octave:2> b = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero

and one.

To display the value of any variable, simply type the name of the variable. For example,

to display the value stored in the matrix b, type the command

6 GNU Octave

octave:3> b

Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For exam-

ple, to multiply the matrix a by a scalar value, type the command

octave:4> 2 * a

To multiply the two matrices a and b, type the command

octave:5> a * b

To form the matrix product a

T

a, type the command

octave:6> a' * a

Solving Linear Equations

To solve the set of linear equations ax = b, use the left division operator, `\':

octave:7> a \ b

This is conceptually equivalent to a

�1

b, but avoids computing the inverse of a matrix

directly.

If the coe�cient matrix is singular, Octave will print a warning message and compute a

minimum norm solution.

Integrating Di�erential Equations

Octave has built-in functions for solving nonlinear di�erential equations of the form

dx

dt

= f(x; t); x(t = t

0

) = x

0

For Octave to integrate equations of this form, you must �rst provide a de�nition of the

function f(x; t). This is straightforward, and may be accomplished by entering the function

body directly on the command line. For example, the following commands de�ne the right

hand side function for an interesting pair of nonlinear di�erential equations. Note that

while you are entering a function, Octave responds with a di�erent prompt, to indicate that

it is waiting for you to complete your input.

octave:8> function xdot = f (x, t)

>

> r = 0.25;

> k = 1.4;

> a = 1.5;

> b = 0.16;

> c = 0.9;

> d = 0.8;

>

> xdot(1) = r*x(1)*(1 - x(1)/k) - a*x(1)*x(2)/(1 + b*x(1));

> xdot(2) = c*a*x(1)*x(2)/(1 + b*x(1)) - d*x(2);

>

> endfunction

Given the initial condition

Chapter 1: A Brief Introduction to Octave 7

x0 = [1; 2];

and the set of output times as a column vector (note that the �rst output time corresponds

to the initial condition given above)

t = linspace (0, 50, 200)';

it is easy to integrate the set of di�erential equations:

x = lsode ("f", x0, t);

The function lsode uses the Livermore Solver for Ordinary Di�erential Equations, described

in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scienti�c

Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55{64.

Producing Graphical Output

To display the solution of the previous example graphically, use the command

plot (t, x)

If you are using the X Window System, Octave will automatically create a separate

window to display the plot. If you are using a terminal that supports some other graphics

commands, you will need to tell Octave what kind of terminal you have. Type the command

gset term

to see a list of the supported terminal types. Octave uses gnuplot to display graphics, and

can display graphics on any terminal that is supported by gnuplot.

To capture the output of the plot command in a �le rather than sending the output

directly to your terminal, you can use a set of commands like this

gset term postscript

gset output "foo.ps"

replot

This will work for other types of output devices as well. Octave's gset command is really

just piped to the gnuplot subprocess, so that once you have a plot on the screen that you

like, you should be able to do something like this to create an output �le suitable for your

graphics printer.

Or, you can eliminate the intermediate �le by using commands like this

gset term postscript

gset output "|lpr -Pname_of_your_graphics_printer"

replot

Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-

or vi-style editing commands. The default keybindings use Emacs-style commands. For

example, to recall the previous command, type Control-p (usually written C-p for short).

C-p gets its name from the fact that you type it by holding down

h

CTRL

i

and then pressing

h

p

i

. Doing this will normally bring back the previous line of input. C-n will bring up the

next line of input, C-b will move the cursor backward on the line, C-f will move the cursor

forward on the line, etc.

A complete description of the command line editing capability is given in this manual

in Section 2.4 [Command Line Editing], page 18.

8 GNU Octave

Getting Help

Octave has an extensive help facility. The same documentation that is available in

printed form is also available from the Octave prompt, because both forms of the documen-

tation are created from the same input �le.

In order to get good help you �rst need to know the name of the command that you

want to use. This name of the function may not always be obvious, but a good place to

start is to just type help. This will show you all the operators, reserved words, functions,

built-in variables, and function �les. You can then get more help on anything that is listed

by simply including the name as an argument to help. For example,

help plot

will display the help text for the plot function.

Octave sends output that is too long to �t on one screen through a pager like less or

more. Type a

h

RET

i

to advance one line, a

h

SPC

i

to advance one page, and

h

q

i

to exit the

pager.

The part of Octave's help facility that allows you to read the complete text of the printed

manual from within Octave normally uses a separate program called Info. When you invoke

Info you will be put into a menu driven program that contains the entire Octave manual.

Help for using Info is provided in this manual in Section 2.3 [Getting Help], page 17.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may

want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent

arguments or metasyntactic variables appear in this font or form: �rst-number. Com-

mands that you type at the shell prompt sometimes appear in this font or form: `octave

--no-init-file'. Commands that you type at the Octave prompt sometimes appear in

this font or form: foo --bar --baz. Speci�c keys on your keyboard appear in this font or

form:

h

ANY

i

.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated

with `

)

'. For example,

sqrt (2)

)

1.4142

You can read this as \sqrt (2) evaluates to 1.4142".

In some cases, matrix values that are returned by expressions are displayed like this

[1, 2; 3, 4] == [1, 3; 2, 4]

)

[1, 0; 0, 1]

and in other cases, they are displayed like this

Chapter 1: A Brief Introduction to Octave 9

eye (3)

)

1 0 0

0 1 0

0 0 1

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces

identical results. The exact equivalence of expressions is indicated with `

�

'. For example,

rot90 ([1, 2; 3, 4], -1)

�

rot90 ([1, 2; 3, 4], 3)

�

rot90 ([1, 2; 3, 4], 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. Examples in

this manual indicate printed text with `

a

'. The value that is returned by evaluating the

expression (here 1) is displayed with `

)

' and follows on a separate line.

printf ("foo %s\n", "bar")

a

foo bar

)

1

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.

Error messages are shown on a line starting with error:.

struct_elements ([1, 2; 3, 4])

error: struct_elements: wrong type argument `matrix'

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format.

The �rst line of a description contains the name of the item followed by its arguments, if

any. The category|function, variable, or whatever|is printed next to the right margin.

The description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears �rst. It is

followed on the same line by a list of parameters. The names used for the parameters are

also used in the body of the description.

Here is a description of an imaginary function foo:

Functionfoo (x, y, : : :)

The function foo subtracts x from y, then adds the remaining arguments to

the result. If y is not supplied, then the number 19 is used by default.

10 GNU Octave

foo (1, [3, 5], 3, 9)

)

[14, 16]

foo (5)

)

14

More generally,

foo (w, x, y, : : :)

�

x - w + y + : : :

Any parameter whose name contains the name of a type (e.g., integer, integer1 ormatrix)

is expected to be of that type. Parameters named object may be of any type. Parameters

with other sorts of names (e.g., new �le) are discussed speci�cally in the description of

the function. In some sections, features common to parameters of several functions are

described at the beginning.

Functions in Octave may be de�ned in several di�erent ways. The catagory name for

functions may include another name that indicates the way that the function is de�ned.

These additional tags include

Built-in Function

The function described is written in a language like C++, C, or Fortran, and is

part of the compiled Octave binary.

Loadable Function

The function described is written in a language like C++, C, or Fortran. On

systems that support dynamic linking of user-supplied functions, it may be

automatically linked while Octave is running, but only if it is needed. See

Section 11.8 [Dynamically Linked Functions], page 91.

Function File

The function described is de�ned using Octave commands stored in a text �le.

See Section 11.6 [Function Files], page 88.

Mapping Function

The function described works element-by-element for matrix and vector argu-

ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the

word `Function' is replaced by `Command. Commands are functions that may called with-

out surrounding their arguments in parentheses. For example, here is the description for

Octave's cd command:

Commandcd dir

Commandchdir dir

Change the current working directory to dir. For example, cd ~/octave changes

the current working directory to `~/octave'. If the directory does not exist, an

error message is printed and the working directory is not changed.

Chapter 1: A Brief Introduction to Octave 11

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the

user, built-in variables typically exist speci�cally so that users can change them to alter the

way Octave behaves (built-in variables are also sometimes called user options). Ordinary

variables and built-in variables are described using a format like that for functions except

that there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

Built-in Variabledo what i mean not what i say

If the value of this variable is nonzero, Octave will do what you actually wanted,

even if you have typed a completely di�erent and meaningless list of commands.

Other variable descriptions have the same format, but `Built-in Variable' is replaced by

`Variable', for ordinary variables, or `Constant' for symbolic constants whose values cannot

be changed.

12 GNU Octave

Chapter 2: Getting Started 13

2 Getting Started

This chapter explains some of Octave's basic features, including how to start an Oc-

tave session, get help at the command prompt, edit the command line, and write Octave

programs that can be executed as commands from your shell.

2.1 Invoking Octave

Normally, Octave is used interactively by running the program `octave' without any

arguments. Once started, Octave reads commands from the terminal until you tell it to

exit.

You can also specify the name of a �le on the command line, and Octave will read and

execute the commands from the named �le and then exit when it is �nished.

You can further control how Octave starts by using the command-line options described

in the next section, and Octave itself can remind you of the options available. Type `octave

--help' to display all available options and briey describe their use (`octave -h' is a shorter

equivalent).

2.1.1 Command Line Options

Here is a complete list of all the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave's parser to

print a lot of information about the commands it reads, and is probably only

useful if you are actually trying to debug the parser.

--echo-commands

-x Echo commands as they are executed.

--exec-path path

Specify the path to search for programs to run. The value of path speci�ed on

the command line will override any value of OCTAVE_EXEC_PATH found in the

environment, but not any commands in the system or user startup �les that set

the built-in variable EXEC_PATH.

--help

-h

-? Print short help message and exit.

--info-file �lename

Specify the name of the info �le to use. The value of �lename speci�ed on

the command line will override any value of OCTAVE_INFO_FILE found in the

environment, but not any commands in the system or user startup �les that set

the built-in variable INFO_FILE.

--info-program program

Specify the name of the info program to use. The value of program speci�ed

on the command line will override any value of OCTAVE_INFO_PROGRAM found

14 GNU Octave

in the environment, but not any commands in the system or user startup �les

that set the built-in variable INFO_PROGRAM.

--interactive

-i Force interactive behavior. This can be useful for running Octave via a remote

shell command or inside an Emacs shell bu�er. For another way to run Octave

within Emacs, see Appendix D [Emacs], page 215.

--no-init-file

Don't read the `~/.octaverc' or `.octaverc' �les.

--no-line-editing

Disable command-line editing and history.

--no-site-file

Don't read the site-wide `octaverc' �le.

--norc

-f Don't read any of the system or user initialization �les at startup. This is

equivalent to using both of the options --no-init-file and --no-site-file.

--path path

-p path Specify the path to search for function �les. The value of path speci�ed on the

command line will override any value of OCTAVE_PATH found in the environment,

but not any commands in the system or user startup �les that set the built-in

variable LOADPATH.

--silent

--quiet

-q Don't print the usual greeting and version message at startup.

--traditional

--braindead

Set initial values for user-preference variables to the following values for com-

patibility with Matlab.

PS1 = ">> "

PS2 = ""

beep_on_error = 1

default_save_format = "mat-binary"

define_all_return_values = 1

do_fortran_indexing = 1

empty_list_elements_ok = 1

implicit_str_to_num_ok = 1

ok_to_lose_imaginary_part = 1

page_screen_output = 0

prefer_column_vectors = 0

print_empty_dimensions = 0

treat_neg_dim_as_zero = 1

warn_function_name_clash = 0

whitespace_in_literal_matrix = "traditional"

--verbose

-V Turn on verbose output.

Chapter 2: Getting Started 15

--version

-v Print the program version number and exit.

�le Execute commands from �le.

Octave also includes several built-in variables that contain information about the com-

mand line, including the number of arguments and all of the options.

Built-in Variableargv

The command line arguments passed to Octave are available in this variable.

For example, if you invoked Octave using the command

octave --no-line-editing --silent

argv would be a string vector with the elements --no-line-editing and --

silent.

If you write an executable Octave script, argv will contain the list of arguments

passed to the script. see Section 2.6 [Executable Octave Programs], page 25.

Built-in Variablenargin

At the top level, this variable is de�ned as the number of command line argu-

ments that were passed to Octave.

Built-in Variableprogram invocation name

Built-in Variableprogram name

When Octave starts, the value of the built-in variable program_invocation_

name is automatically set to the name that was typed at the shell prompt

to run Octave, and the value of program_name is automatically set to the

�nal component of program_invocation_name. For example, if you typed

`/bin/octave' to start Octave, program_invocation_name would have the

value "/bin/octave", and program_name would have the value "octave".

If executing a script from the command line (e.g., octave foo.m or using an

executable Octave script, the program name is set to the name of the script.

See Section 2.6 [Executable Octave Programs], page 25 for an example of how

to create an executable Octave script.

Here is an example of using these variables to reproduce Octave's command line.

printf ("%s", program_name);

for i = 1:nargin

printf (" %s", argv(i,:));

endfor

printf ("\n");

See Section 8.1 [Index Expressions], page 55 for an explanation of how to properly index

arrays of strings and substrings in Octave.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the following �les:

16 GNU Octave

octave-home/share/octave/site/m/startup/octaverc

Where octave-home is the directory in which all of Octave is installed (the

default is `'). This �le is provided so that changes to the default Octave envi-

ronment can be made globally for all users at your site for all versions of Octave

you have installed. Some care should be taken when making changes to this

�le, since all users of Octave at your site will be a�ected.

octave-home/share/octave/version/m/startup/octaverc

Where octave-home is the directory in which all of Octave is installed (the

default is `'), and version is the version number of Octave. This �le is provided

so that changes to the default Octave environment can be made globally for

all users for a particular version of Octave. Some care should be taken when

making changes to this �le, since all users of Octave at your site will be a�ected.

~/.octaverc

This �le is normally used to make personal changes to the default Octave envi-

ronment.

.octaverc

This �le can be used to make changes to the default Octave environment for

a particular project. Octave searches for this �le in the current directory after

it reads `~/.octaverc'. Any use of the cd command in the `~/.octaverc' �le

will a�ect the directory that Octave searches for the �le `.octaverc'.

If you start Octave in your home directory, commands from from the �le

`~/.octaverc' will only be executed once.

A message will be displayed as each of the startup �les is read if you invoke Octave with

the --verbose option but without the --silent option.

Startup �les may contain any valid Octave commands, including function de�nitions.

2.2 Quitting Octave

Built-in Functionexit (status)

Built-in Functionquit (status)

Exit the current Octave session. If the optional integer value status is supplied,

pass that value to the operating system as the Octave's exit status.

Built-in Functionatexit (fcn)

Register function to be called when Octave exits. For example,

function print_flops_at_exit ()

printf ("\n%s\n", system ("fortune"));

fflush (stdout);

endfunction

atexit ("print_flops_at_exit");

will print a message when Octave exits.

Chapter 2: Getting Started 17

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command help

-i. In addition, the documentation for individual user-written functions and variables is

also available via the help command. This section describes the commands used for reading

the manual and the documentation strings for user-supplied functions and variables. See

Section 11.6 [Function Files], page 88, for more information about how to document the

functions you write.

Commandhelp

Octave's help command can be used to print brief usage-style messages, or

to display information directly from an on-line version of the printed manual,

using the GNU Info browser. If invoked without any arguments, help prints a

list of all the available operators, functions, and built-in variables. If the �rst

argument is -i, the help command searches the index of the on-line version of

this manual for the given topics.

For example, the command help help prints a short message describing the

help command, and help -i help starts the GNU Info browser at this node in

the on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the

command C-h.

The help command can give you information about operators, but not the comma and

semicolons that are used as command separators. To get help for those, you must type help

comma or help semicolon.

Built-in VariableINFO FILE

The variable INFO_FILE names the location of the Octave info �le. The default

value is "octave-home/info/octave.info", where octave-home is the directory

where all of Octave is installed.

Built-in VariableINFO PROGRAM

The variable INFO_PROGRAM names the info program to run. Its initial value

is "octave-home/libexec/octave/version/exec/arch/info", where octave-

home is the directory where all of Octave is installed, version is the Octave

version number, and arch is the machine type. The value of INFO_PROGRAM

can be overridden by the environment variable OCTAVE_INFO_PROGRAM, or the

command line argument --info-program NAME, or by setting the value of the

built-in variable INFO_PROGRAM in a startup script.

Built-in Variablesuppress verbose help message

If the value of suppress_verbose_help_message is nonzero, Octave will not

add additional help information to the end of the output from the help com-

mand and usage messages for built-in commands.

18 GNU Octave

2.4 Command Line Editing

Octave uses the GNU readline library to provide an extensive set of command-line editing

and history features. Only the most common features are described in this manual. Please

see The GNU Readline Library manual for more information.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.

Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-

ample, the character Control-amoves the cursor to the beginning of the line. To type C-a,

hold down

h

CTRL

i

and then press

h

a

i

. In the following sections, control characters such as

Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. On some terminals,

you type M-u by holding down

h

META

i

and pressing

h

u

i

. If your terminal does not have a

h

META

i

key, you can still type Meta charcters using two-character sequences starting with

ESC. Thus, to enter M-u, you could type

h

ESC

ih

u

i

. The ESC character sequences are also

allowed on terminals with real Meta keys. In the following sections, Meta characters such

as Meta-u are written as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

C-f Move forward one character.

h

DEL

i

Delete the character to the left of the cursor.

C-d Delete the character underneath the cursor.

M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

C-l Clear the screen, reprinting the current line at the top.

C-_

C-/ Undo the last thing that you did. You can undo all the way back to an empty

line.

M-r Undo all changes made to this line. This is like typing the `undo' command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to

do editing of the input line. On most terminals, you can also use the arrow keys in place of

C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose

convention that control keystrokes operate on characters while meta keystrokes operate on

words.

Chapter 2: Getting Started 19

There is also a function available so that you can clear the screen from within Octave

programs.

Built-in Functionclc ()

Built-in Functionhome ()

Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use,

usually by yanking it back into the line. If the description for a command says that it `kills'

text, then you can be sure that you can get the text back in a di�erent (or the same) place

later.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the

end of the next word.

M-

h

DEL

i

Kill from the cursor to the start of the previous word, or if between words, to

the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is di�erent than M-

h

DEL

i

because the word boundaries di�er.

And, here is how to yank the text back into the line. Yanking means to copy the

most-recently-killed text from the kill bu�er.

C-y Yank the most recently killed text back into the bu�er at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior

command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive

kills save all of the killed text together, so that when you yank it back, you get it in one

clean sweep. The kill ring is not line speci�c; the text that you killed on a previously typed

line is available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have

a special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C-q

C-v Add the next character that you type to the line verbatim. This is how to insert

things like C-q for example.

M-

h

TAB

i

Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,

also moving the cursor forward. If the cursor is at the end of the line, then

transpose the two characters before it.

20 GNU Octave

M-t Drag the word behind the cursor past the word in front of the cursor moving

the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or

following) word, moving the cursor to the end of the word.

M-l Lowecase the characters following the cursor to the end of the current (or fol-

lowing) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word

if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You

The following commands allow Octave to complete command and variable names for

you.

h

TAB

i

Attempt to do completion on the text before the cursor. Octave can complete

the names of commands and variables.

M-? List the possible completions of the text before the cursor.

Built-in Variablecompletion append char

The value of completion_append_char is used as the character to append to

successful command-line completion attempts. The default value is " " (a single

space).

Built-in Functioncompletion matches (hint)

Generate possible completions given hint.

This function is provided for the bene�t of programs like Emacs which might

be controlling Octave and handling user input. The current command number

is not incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous

commands to edit or execute them again. When you exit Octave, the most recent commands

you have typed, up to the number speci�ed by the variable history_size, are saved in a

�le. When Octave starts, it loads an initial list of commands from the �le named by the

variable history_file.

Here are the commands for simple browsing and searching the history list.

h

LFD

i

h

RET

i

Accept the line regardless of where the cursor is. If this line is non-empty, add

it to the history list. If this line was a history line, then restore the history line

to its original state.

C-p Move `up' through the history list.

C-n Move `down' through the history list.

M-< Move to the �rst line in the history.

Chapter 2: Getting Started 21

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving `up' through the his-

tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving `down' through the the

history as necessary.

On most terminals, you can also use the arrow keys in place of C-p and C-n to move

through the history list.

In addition to the keyboard commands for moving through the history list, Octave

provides three functions for viewing, editing, and re-running chunks of commands from the

history list.

Commandhistory options

If invoked with no arguments, history displays a list of commands that you

have executed. Valid options are:

-w �le Write the current history to the �le �le. If the name is omitted,

use the default history �le (normally `~/.octave_hist').

-r �le Read the �le �le, replacing the current history list with its con-

tents. If the name is omitted, use the default history �le (normally

`~/.octave_hist').

N Only display the most recent N lines of history.

-q Don't number the displayed lines of history. This is useful for cut-

ting and pasting commands if you are using the X Window System.

For example, to display the �ve most recent commands that you have typed

without displaying line numbers, use the command history -q 5.

Commandedit history options

If invoked with no arguments, edit_history allows you to edit the history list

using the editor named by the variable EDITOR. The commands to be edited

are �rst copied to a temporary �le. When you exit the editor, Octave executes

the commands that remain in the �le. It is often more convenient to use edit_

history to de�ne functions rather than attempting to enter them directly on

the command line. By default, the block of commands is executed as soon as

you exit the editor. To avoid executing any commands, simply delete all the

lines from the bu�er before exiting the editor.

The edit_history command takes two optional arguments specifying the his-

tory numbers of �rst and last commands to edit. For example, the command

edit_history 13

extracts all the commands from the 13th through the last in the history list.

The command

edit_history 13 169

only extracts commands 13 through 169. Specifying a larger number for the

�rst command than the last command reverses the list of commands before

placing them in the bu�er to be edited. If both arguments are omitted, the

previous command in the history list is used.

22 GNU Octave

Commandrun history

Similar to edit_history, except that the editor is not invoked, and the com-

mands are simply executed as they appear in the history list.

Built-in VariableEDITOR

A string naming the editor to use with the edit_history command. If the

environment variable EDITOR is set when Octave starts, its value is used as the

default. Otherwise, EDITOR is set to "emacs".

Built-in Variablehistory �le

This variable speci�es the name of the �le used to store command history. The

default value is "~/.octave_hist", but may be overridden by the environment

variable OCTAVE_HISTFILE.

Built-in Variablehistory size

This variable speci�es how many entries to store in the history �le. The default

value is 1024, but may be overridden by the environment variable OCTAVE_

HISTSIZE.

Built-in Variablesaving history

If the value of saving_history is "true", command entered on the command

line are saved in the �le speci�ed by the variable history_file.

2.4.6 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line

prompts. Octave allows the prompt to be customized by inserting a number of backslash-

escaped special characters that are decoded as follows:

`\t' The time.

`\d' The date.

`\n' Begins a new line by printing the equivalent of a carriage return followed by a

line feed.

`\s' The name of the program (usually just `octave').

`\w' The current working directory.

`\W' The basename of the current working directory.

`\u' The username of the current user.

`\h' The hostname, up to the �rst `.'.

`\H' The hostname.

`\#' The command number of this command, counting from when Octave starts.

`\!' The history number of this command. This di�ers from `\#' by the number of

commands in the history list when Octave starts.

`\$' If the e�ective UID is 0, a `#', otherwise a `$'.

`\nnn' The character whose character code in octal is nnn.

`\\' A backslash.

Chapter 2: Getting Started 23

Built-in VariablePS1

The primary prompt string. When executing interactively, Octave displays the

primary prompt PS1 when it is ready to read a command.

The default value of PS1 is "\s:\#> ". To change it, use a command like

octave:13> PS1 = "\\u@\\H> "

which will result in the prompt `boris@kremvax> ' for the user `boris' logged

in on the host `kremvax.kgb.su'. Note that two backslashes are required to

enter a backslash into a string. See Chapter 5 [Strings], page 37.

Built-in VariablePS2

The secondary prompt string, which is printed when Octave is expecting addi-

tional input to complete a command. For example, when de�ning a function

over several lines, Octave will print the value of PS1 at the beginning of each

line after the �rst. The default value of PS2 is "> ".

Built-in VariablePS4

If Octave is invoked with the --echo-input option, the value of PS4 is printed

before each line of input that is echoed. The default value of PS4 is "+ ". See

Section 2.1 [Invoking Octave], page 13, for a description of --echo-input.

2.4.7 Diary and Echo Commands

Octave's diary feature allows you to keep a log of all or part of an interactive session by

recording the input you type and the output that Octave produces in a separate �le.

Commanddiary options

Create a list of all commands and the output they produce, mixed together just

as you see them on your terminal. Valid options are:

on Start recording your session in a �le called `diary' in your current

working directory.

off Stop recording your session in the diary �le.

�le Record your session in the �le named �le.

Without any arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being

evaluated. This can be especially helpful for debugging some kinds of problems.

Commandecho options

Control whether commands are displayed as they are executed. Valid options

are:

on Enable echoing of commands as they are executed in script �les.

off Disable echoing of commands as they are executed in script �les.

on all Enable echoing of commands as they are executed in script �les

and functions.

24 GNU Octave

off all Disable echoing of commands as they are executed in script �les

and functions.

If invoked without any arguments, echo toggles the current echo state.

Built-in Variableecho executing commands

This variable is may also be used to control the echo state. It may be the sum

of the following values:

1 Echo commands read from script �les.

2 Echo commands from functions.

4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent

to the command echo on all.

The value of echo_executing_commands is set by the echo command and the

command line option --echo-input.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.

A parse error occurs if Octave cannot understand something you have typed. For exam-

ple, if you misspell a keyword,

octave:13> functon y = f (x) y = x^2; endfunction

Octave will respond immediately with a message like this:

parse error:

functon y = f (x) y = x^2; endfunction

^

For most parse errors, Octave uses a caret (`^') to mark the point on the line where it

was unable to make sense of your input. In this case, Octave generated an error message

because the keyword function was misspelled. Instead of seeing `function f', Octave saw

two consecutive variable names, which is invalid in this context. It marked the error at the

y because the �rst name by itself was accepted as valid input.

Another class of error message occurs occurs at evaluation time. These errors are called

run-time errors, or sometimes evaluation errors because they occur when your program is

being run, or evaluated. For example, if after correcting the mistake in the previous function

de�nition, you type

octave:13> f ()

Octave will respond with

error: `x' undefined near line 1 column 24

error: evaluating expression near line 1, column 24

error: evaluating assignment expression near line 1, column 22

error: called from `f'

Chapter 2: Getting Started 25

This error message has several parts, and gives you quite a bit of information to help you

locate the source of the error. The messages are generated from the point of the innermost

error, and provide a traceback of enclosing expressions and function calls.

In the example above, the �rst line indicates that a variable named `x' was found to be

unde�ned near line 1 and column 24 of some function or expression. For errors occurring

within functions, lines from the beginning of the �le containing the function de�nition. For

errors occurring at the top level, the line number indicates the input line number, which is

usually displayed in the prompt string.

The second and third lines in the example indicate that the error occurred within an

assignment expression, and the last line of the error message indicates that the error occurred

within the function f. If the function f had been called from another function, for example,

g, the list of errors would have ended with one more line:

error: called from `g'

These lists of function calls usually make it fairly easy to trace the path your program

took before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts,

using the `#!' script mechanism. You can do this on GNU systems and on many Unix

systems

1

For example, you could create a text �le named `hello', containing the following lines:

#! octave-interpreter-name -qf

a sample Octave program

printf ("Hello, world!\n");

(where octave-interpreter-name should be replaced with the full �le name for your Octave

binary). After making this �le executable (with the chmod command), you can simply type:

hello

at the shell, and the system will arrange to run Octave as if you had typed:

octave hello

The line beginning with `#!' lists the full �le name of an interpreter to be run, and an

optional initial command line argument to pass to that interpreter. The operating system

then runs the interpreter with the given argument and the full argument list of the executed

program. The �rst argument in the list is the full �le name of the Octave program. The

rest of the argument list will either be options to Octave, or data �les, or both. The `-qf'

option is usually speci�ed in stand-alone Octave programs to prevent them from printing

the normal startup message, and to keep them from behaving di�erently depending on

the contents of a particular user's `~/.octaverc' �le. See Section 2.1 [Invoking Octave],

page 13. Note that some operating systems may place a limit on the number of characters

that are recognized after `#!'.

1

The `#!' mechanism works on Unix systems derived from Berkeley Unix, System V

Release 4, and some System V Release 3 systems.

26 GNU Octave

Self-contained Octave scripts are useful when you want to write a program which users

can invoke without knowing that the program is written in the Octave language.

If you invoke an executable Octave script with command line arguments, the arguments

are available in the built-in variable argv. See Section 2.1.1 [Command Line Options],

page 13. For example, the following program will reproduce the command line that is used

to execute it.

#! /bin/octave -qf

printf ("%s", program_name);

for i = 1:nargin

printf (" %s", argv(i,:));

endfor

printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and

that is not really part of the program. Comments can explain what the program does, and

how it works. Nearly all programming languages have provisions for comments, because

programs are typically hard to understand without them.

In the Octave language, a comment starts with either the sharp sign character, `#', or

the percent symbol `%' and continues to the end of the line. The Octave interpreter ignores

the rest of a line following a sharp sign or percent symbol. For example, we could have put

the following into the function f:

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right hand

side functions for a set of nonlinear

differential equations.

r = 0.25;

: : :

endfunction

The help command (see Section 2.3 [Getting Help], page 17) is able to �nd the �rst

block of comments in a function (even those that are composed directly on the command

line). This means that users of Octave can use the same commands to get help for built-in

functions, and for functions that you have de�ned. For example, after de�ning the function

f above, the command help f produces the output

usage: f (x, t)

This function defines the right hand

side functions for a set of nonlinear

differential equations.

Chapter 2: Getting Started 27

Although it is possible to put comment lines into keyboard-composed throw-away Octave

programs, it usually isn't very useful, because the purpose of a comment is to help you or

another person understand the program at a later time.

28 GNU Octave

Chapter 3: Data Types 29

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex

scalars and matrices, character strings, and a data structure type.

It is also possible to de�ne new specialized data types by writing a small amount of

C++ code. On some systems, new data types can be loaded dynamically while Octave is

running, so it is not necessary to recompile all of Octave just to add a new type. See

Section 11.8 [Dynamically Linked Functions], page 91 for more information about Octave's

dynamic linking capabilities. Section 3.2 [User-de�ned Data Types], page 30 describes what

you must do to de�ne a new data type for Octave.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges,

character strings, and a data structure type. Additional built-in data types may be added

in future versions. If you need a specialized data type that is not currently provided as a

built-in type, you are encouraged to write your own user-de�ned data type and contribute

it for distribution in a future release of Octave.

3.1.1 Numeric Objects

Octave's built-in numeric objects include real and complex scalars and matrices. All

built-in numeric data is currently stored as double precision numbers. On systems that use

the IEEE oating point format, values in the range of approximately 2:2251� 10

�308

to

1:7977� 10

308

can be stored, and the relative precision is approximately 2:2204� 10

�16

.

The exact values are given by the variables realmin, realmax, and eps, respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It

is easy to extract individual rows, columns, or submatrices is using a variety of powerful

indexing features. See Section 8.1 [Index Expressions], page 55.

See Chapter 4 [Numeric Data Types], page 31, for more information.

3.1.2 String Objects

A character string in Octave consists of a sequence of characters enclosed in either

double-quote or single-quote marks. Internally, Octave currently stores strings as matrices

of characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings], page 37, for more information.

3.1.3 Data Structure Objects

Octave's data structure type can help you to organize related objects of di�erent types.

The current implementation uses an associative array with indices limited to strings, but

the syntax is more like C-style structures.

See Chapter 6 [Data Structures], page 43, for more information.

30 GNU Octave

3.2 User-de�ned Data Types

Someday I hope to expand this to include a complete description of Octave's mechanism

for managing user-de�ned data types. Until this feature is documented here, you will have

to make do by reading the code in the `ov.h', `ops.h', and related �les from Octave's `src'

directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These

functions are de�ned for all objects. They return �1 when the operation doesn't make sense.

For example, Octave's data structure type doesn't have rows or columns, so the rows and

columns functions return �1 for structure arguments.

Function Filecolumns (a)

Return the number of columns of a.

Function Filerows (a)

Return the number of rows of a.

Function Filelength (a)

Return the number of rows of a or the number of columns of a, whichever is

larger.

Function Filesize (a, n)

Return the number rows and columns of a.

With one input argument and one output argument, the result is returned in a

2 element row vector. If there are two output arguments, the number of rows

is assigned to the �rst, and the number of columns to the second. For example,

size ([1, 2; 3, 4; 5, 6])

)

[3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])

)

nr = 3

)

nc = 2

If given a second argument of either 1 or 2, size will return only the row or

column dimension. For example

size ([1, 2; 3, 4; 5, 6], 2)

)

2

returns the number of columns in the given matrix.

Function Fileisempty (a)

Return 1 if a is an empty matrix (either the number of rows, or the number of

columns, or both are zero). Otherwise, return 0.

Chapter 4: Numeric Data Types 31

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex

values.

The simplest form of a numeric constant, a scalar, is a single number that can be an

integer, a decimal fraction, a number in scienti�c (exponential) notation, or a complex

number. Note that all numeric constants are represented within Octave in double-precision

oating point format (complex constants are stored as pairs of double-precision oating

point values). Here are some examples of real-valued numeric constants, which all have the

same value:

105

1.05e+2

1050e-1

To specify complex constants, you can write an expression of the form

3 + 4i

3.0 + 4.0i

0.3e1 + 40e-1i

all of which are equivalent. The letter `i' in the previous example stands for the pure

imaginary constant, de�ned as

p

�1.

For Octave to recognize a value as the imaginary part of a complex constant, a space

must not appear between the number and the `i'. If it does, Octave will print an error

message, like this:

octave:13> 3 + 4 i

parse error:

3 + 4 i

^

You may also use `j', `I', or `J' in place of the `i' above. All four forms are equivalent.

4.1 Matrices

It is easy to de�ne a matrix of values in Octave. The size of the matrix is determined

automatically, so it is not necessary to explicitly state the dimensions. The expression

a = [1, 2; 3, 4]

results in the matrix

a =

�

1 2

3 4

�

Elements of a matrix may be arbitrary expressions, provided that the dimensions all

make sense when combining the various pieces. For example, given the above matrix, the

expression

[a, a]

produces the matrix

32 GNU Octave

ans =

1 2 1 2

3 4 3 4

but the expression

[a, 1]

produces the error

error: number of rows must match near line 13, column 6

(assuming that this expression was entered as the �rst thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the sur-

rounding context to determine whether spaces and newline characters should be converted

into element and row separators, or simply ignored, so commands like

[linspace (1, 2)]

and

a = [1 2

3 4]

will work. However, some possible sources of confusion remain. For example, in the expres-

sion

[1 - 1]

the `-' is treated as a binary operator and the result is the scalar 0, but in the expression

[1 -1]

the `-' is treated as a unary operator and the result is the vector [1, -1].

Given a = 1, the expression

[1 a']

results in the single quote character `'' being treated as a transpose operator and the result

is the vector [1, 1], but the expression

[1 a ']

produces the error message

error: unterminated string constant

because to not do so would make it impossible to correctly parse the valid expression

[a 'foo']

For clarity, it is probably best to always use commas and semicolons to separate ma-

trix elements and rows. It is possible to enforce this style by setting the built-in variable

whitespace_in_literal_matrix to "ignore".

Built-in Variablewhitespace in literal matrix

This variable allows some control over how Octave decides to convert spaces to

commas and semicolons in matrix expressions like [m (1)] or

[1, 2,

3, 4]

Chapter 4: Numeric Data Types 33

If the value of whitespace_in_literal_matrix is "ignore", Octave will never

insert a comma or a semicolon in a literal matrix list. For example, the expres-

sion [1 2] will result in an error instead of being treated the same as [1, 2],

and the expression

[1, 2,

3, 4]

will result in the vector [1, 2, 3, 4] instead of a matrix.

If the value of whitespace_in_literal_matrix is "traditional", Octave will

convert spaces to a comma between identi�ers and `('. For example, given the

matrix

m = [3 2]

the expression

[m (1)]

will be parsed as

[m, (1)]

and will result in

[3 2 1]

and the expression

[1, 2,

3, 4]

will result in a matrix because the newline character is converted to a semicolon

(row separator) even though there is a comma at the end of the �rst line (trailing

commas or semicolons are ignored). This is apparently how Matlab behaves.

Any other value for whitespace_in_literal_matrix results in behavior that

is the same as traditional, except that Octave does not convert spaces to a

comma between identi�ers and `('. For example, the expression

[m (1)]

will produce `3'. This is the way Octave has always behaved.

When you type a matrix or the name of a variable whose value is a matrix, Octave

responds by printing the matrix in with neatly aligned rows and columns. If the rows of

the matrix are too large to �t on the screen, Octave splits the matrix and displays a header

before each section to indicate which columns are being displayed.

You can use the following variables to control the format of the output.

Built-in Variableoutput max �eld width

This variable speci�es the maximum width of a numeric output �eld. The

default value is 10.

Built-in Variableoutput precision

This variable speci�es the minimum number of signi�cant �gures to display for

numeric output. The default value is 5.

34 GNU Octave

It is possible to achieve a wide range of output styles by using di�erent values of output_

precision and output_max_field_width. Reasonable combinations can be set using the

format function. See Section 13.1 [Basic Input and Output], page 98.

Built-in Variablesplit long rows

For large matrices, Octave may not be able to display all the columns of a

given row on one line of your screen. This can result in missing information

or output that is nearly impossible to decipher, depending on whether your

terminal truncates or wraps long lines.

If the value of split_long_rows is nonzero, Octave will display the matrix in a

series of smaller pieces, each of which can �t within the limits of your terminal

width. Each set of rows is labeled so that you can easily see which columns are

currently being displayed. For example:

octave:13> rand (2,10)

ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467

0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326

0.44672 0.94303 0.56564 0.82150

The default value of split_long_rows is nonzero.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are

handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages

2{6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realiza-

tion of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,

Number 5, May 1993. Briey, given a scalar s, an m � n matrix M

m�n

, and an m � n

empty matrix []

m�n

(with either one or both dimensions equal to zero), the following are

true:

s � []

m�n

= []

m�n

� s = []

m�n

[]

m�n

+ []

m�n

= []

m�n

[]

0�m

�M

m�n

= []

0�n

M

m�n

� []

n�0

= []

m�0

[]

m�0

� []

0�n

= 0

m�n

By default, dimensions of the empty matrix are printed along with the empty matrix

symbol, `[]'. The built-in variable print_empty_dimensions controls this behavior.

Chapter 4: Numeric Data Types 35

Built-in Variableprint empty dimensions

If the value of print_empty_dimensions is nonzero, the dimensions of empty

matrices are printed along with the empty matrix symbol, `[]'. For example,

the expression

zeros (3, 0)

will print

ans = [](3x0)

Empty matrices may also be used in assignment statements as a convenient way to delete

rows or columns of matrices. See Section 8.6 [Assignment Expressions], page 64.

Octave will normally issue a warning if it �nds an empty matrix in the list of elements

that make up another matrix. You can use the variable empty_list_elements_ok to sup-

press the warning or to treat it as an error.

Built-in Variableempty list elements ok

This variable controls whether Octave ignores empty matrices in a matrix list.

For example, if the value of empty_list_elements_ok is nonzero, Octave will

ignore the empty matrices in the expression

a = [1, [], 3, [], 5]

and the variable a will be assigned the value [1, 3, 5].

The default value is "warn".

When Octave parses a matrix expression, it examines the elements of the list to determine

whether they are all constants. If they are, it replaces the list with a single matrix constant.

Built-in Variablepropagate empty matrices

If the value of propagate_empty_matrices is nonzero, functions like inverse

and svd will return an empty matrix if they are given one as an argument. The

default value is 1.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range

expression is de�ned by the value of the �rst element in the range, an optional value for the

increment between elements, and a maximum value which the elements of the range will

not exceed. The base, increment, and limit are separated by colons (the `:' character) and

may contain any arithmetic expressions and function calls. If the increment is omitted, it

is assumed to be 1. For example, the range

1 : 5

de�nes the set of values `[1, 2, 3, 4, 5]', and the range

1 : 3 : 5

de�nes the set of values `[1, 4]'.

Although a range constant speci�es a row vector, Octave does not convert range con-

stants to vectors unless it is necessary to do so. This allows you to write a constant like `1

: 10000' without using 80,000 bytes of storage on a typical 32-bit workstation.

36 GNU Octave

Note that the upper (or lower, if the increment is negative) bound on the range is not

always included in the set of values, and that ranges de�ned by oating point values can

produce surprising results because Octave uses oating point arithmetic to compute the

values in the range. If it is important to include the endpoints of a range and the number of

elements is known, you should use the linspace function instead (see Section 15.3 [Special

Utility Matrices], page 131).

When Octave parses a range expression, it examines the elements of the expression to

determine whether they are all constants. If they are, it replaces the range expression with

a single range constant.

4.3 Predicates for Numeric Objects

Function Fileis matrix (a)

Return 1 if a is a matrix. Otherwise, return 0.

Function Fileis vector (a)

Return 1 if a is a vector. Otherwise, return 0.

Function Fileis scalar (a)

Return 1 if a is a scalar. Otherwise, return 0.

Function Fileis square (x)

If x is a square matrix, then return the dimension of x. Otherwise, return 0.

Function Fileis symmetric (x, tol)

If x is symmetric within the tolerance speci�ed by tol, then return the dimension

of x. Otherwise, return 0. If tol is omitted, use a tolerance equal to the machine

precision.

Chapter 5: Strings 37

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or

single-quote marks. For example, both of the following expressions

"parrot"

'parrot'

represent the string whose contents are `parrot'. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3

[Arithmetic Ops], page 60) but double-quote marks have no other purpose in Octave, it is

best to use double-quote marks to denote strings.

Some characters cannot be included literally in a string constant. You represent them

instead with escape sequences, which are character sequences beginning with a backslash

(`\').

One use of an escape sequence is to include a double-quote (single-quote) character in

a string constant that has been de�ned using double-quote (single-quote) marks. Since a

plain double-quote would end the string, you must use `\"' to represent a single double-

quote character as a part of the string. The backslash character itself is another character

that cannot be included normally. You must write `\\' to put one backslash in the string.

Thus, the string whose contents are the two characters `"\' may be written "\"\\" or '"\\'.

Similarly, the string whose contents are the two characters `'\' may be written '\'\\' or

"'\\".

Another use of backslash is to represent unprintable characters such as newline. While

there is nothing to stop you from writing most of these characters directly in a string

constant, they may look ugly.

Here is a table of all the escape sequences used in Octave. They are the same as those

used in the C programming language.

\\ Represents a literal backslash, `\'.

\" Represents a literal double-quote character, `"'.

\' Represents a literal single-quote character, `''.

\a Represents the \alert" character, control-g, ASCII code 7.

\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-l, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.

\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

Strings may be concatenated using the notation for de�ning matrices. For example, the

expression

["foo" , "bar" , "baz"]

produces the string whose contents are `foobarbaz'. See Chapter 4 [Numeric Data Types],

page 31 for more information about creating matrices.

38 GNU Octave

5.1 Creating Strings

Function Fileblanks (n)

Return a string of n blanks.

Function Fileint2str (n)

Function Filenum2str (x)

Convert a number to a string. These functions are not very exible, but are

provided for compatibility with Matlab. For better control over the results,

use sprintf (see Section 13.2.4 [Formatted Output], page 105).

Built-in Functionsetstr (x)

Convert a matrix to a string. Each element of the matrix is converted to the

corresponding ASCII character. For example,

setstr ([97, 98, 99])

)

"abc"

Function Filestrcat (s1, s2, : : :)

Return a string containing all the arguments concatenated. For example,

s = ["ab"; "cde"];

strcat (s, s, s)

)

"ab ab ab "

"cdecdecde"

Built-in Variablestring �ll char

The value of this variable is used to pad all strings in a string matrix to the

same length. It should be a single character. The default value is " " (a single

space). For example,

string_fill_char = "X";

["these"; "are"; "strings"]

)

"theseXX"

"areXXXX"

"strings"

Function Filestr2mat (s 1, : : :, s n)

Return a matrix containing the strings s 1, : : :, s n as its rows. Each string is

padded with blanks in order to form a valid matrix.

Note: This function is modelled after Matlab. In Octave, you can create a

matrix of strings by [s 1; : : :; s n] even if the strings are not all the same

length.

Built-in Functionisstr (a)

Return 1 if a is a string. Otherwise, return 0.

Chapter 5: Strings 39

5.2 Searching and Replacing

Function Filedeblank (s)

Removes the trailing blanks from the string s.

Function File�ndstr (s, t, overlap)

Return the vector of all positions in the longer of the two strings s and t where

an occurrence of the shorter of the two starts. If the optional argument overlap

is nonzero, the returned vector can include overlapping positions (this is the

default). For example,

findstr ("ababab", "a")

)

[1, 3, 5]

findstr ("abababa", "aba", 0)

)

[1, 5]

Function Fileindex (s, t)

Return the position of the �rst occurrence of the string t in the string s, or 0 if

no occurrence is found. For example,

index ("Teststring", "t")

)

4

Note: This function does not work for arrays of strings.

Function Filerindex (s, t)

Return the position of the last occurrence of the string t in the string s, or 0 if

no occurrence is found. For example,

rindex ("Teststring", "t")

)

6

Note: This function does not work for arrays of strings.

Function Filesplit (s, t)

Divides the string s into pieces separated by t, returning the result in a string

array (padded with blanks to form a valid matrix). For example,

split ("Test string", "t")

)

"Tes "

" s "

"ring"

Function Filestrcmp (s1, s2)

Compares two strings, returning 1 if they are the same, and 0 otherwise.

Note: For compatibility withMatlab, Octave's strcmp function returns 1 if the

strings are equal, and 0 otherwise. This is just the opposite of the corresponding

C library function.

Function Filestrrep (s, x, y)

Replaces all occurrences of the substring x of the string s with the string y. For

example,

strrep ("This is a test string", "is", "&%$")

)

"Th&%$ &%$ a test string"

40 GNU Octave

Function Filesubstr (s, beg, len)

Return the substring of s which starts at character number beg and is len

characters long. For example,

substr ("This is a test string", 6, 9)

)

"is a test"

Note: This function is patterned after AWK. You can get the same

result by s (beg : (beg + len - 1)).

5.3 String Conversions

Function Filebin2dec (s)

Return a decimal number corresponding to the the binary number represented

as a string of zeros and ones. For example,

bin2dec ("1110")

)

14

Function Filedec2bin (n)

Return a binary number corresponding the the nonnegative decimal number n,

as a string of ones and zeros. For example,

dec2bin (14)

)

"1110"

Function Filedec2hex (n)

Return the hexadecimal number corresponding to the nonnegative decimal num-

ber n, as a string. For example,

dec2hex (2748)

)

"abc"

Function Filehex2dec (s)

Return the decimal number corresponding to the hexadecimal number stored

in the string s. For example,

hex2dec ("12B")

)

299

hex2dec ("12b")

)

299

Function Filestr2num (s)

Convert the string s to a number.

Function Filetoascii (s)

Return ASCII representation of s in a matrix. For example,

toascii ("ASCII")

)

[65, 83, 67, 73, 73]

Function Filetolower (s)

Return a copy of the string s, with each upper-case character replaced by the

corresponding lower-case one; nonalphabetic characters are left unchanged. For

example,

Chapter 5: Strings 41

tolower ("MiXeD cAsE 123")

)

"mixed case 123"

Function Filetoupper (s)

Return a copy of the string s, with each lower-case character replaced by the

corresponding upper-case one; nonalphabetic characters are left unchanged. For

example,

toupper ("MiXeD cAsE 123")

)

"MIXED CASE 123"

Built-in Functionundo string escapes (s)

Converts special characters in strings back to their escaped forms. For example,

the expression

bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string

variable bell. If this string is printed, the system will ring the terminal bell

(if it is possible). This is normally the desired outcome. However, sometimes

it is useful to be able to print the original representation of the string, with the

special characters replaced by their escape sequences. For example,

octave:13> undo_string_escapes (bell)

ans = \a

replaces the unprintable alert character with its printable representation.

Built-in Variableimplicit str to num ok

If the value of implicit_str_to_num_ok is nonzero, implicit conversions of

strings to their numeric ASCII equivalents are allowed. Otherwise, an error

message is printed and control is returned to the top level. The default value

is 0.

5.4 Character Class Functions

Octave also provides the following character class test functions patterned after the

functions in the standard C library. They all operate on string arrays and return matrices

of zeros and ones. Elements that are nonzero indicate that the condition was true for the

corresponding character in the string array. For example,

isalpha ("!Q@WERT^Y&")

)

[0, 1, 0, 1, 1, 1, 1, 0, 1, 0]

Mapping Functionisalnum (s)

Return 1 for characters that are letters or digits (isalpha (a) or isdigit ()

is true).

Mapping Functionisalpha (s)

Return true for characters that are letters (isupper (a) or islower () is true).

Mapping Functionisascii (s)

Return 1 for characters that are ASCII (in the range 0 to 127 decimal).

42 GNU Octave

Mapping Functioniscntrl (s)

Return 1 for control characters.

Mapping Functionisdigit (s)

Return 1 for characters that are decimal digits.

Mapping Functionisgraph (s)

Return 1 for printable characters (but not the space character).

Mapping Functionislower (s)

Return 1 for characters that are lower case letters.

Mapping Functionisprint (s)

Return 1 for printable characters (including the space character).

Mapping Functionispunct (s)

Return 1 for punctuation characters.

Mapping Functionisspace (s)

Return 1 for whitespace characters (space, formfeed, newline, carriage return,

tab, and vertical tab).

Mapping Functionisupper (s)

Return 1 for upper case letters.

Mapping Functionisxdigit (s)

Return 1 for characters that are hexadecimal digits.

Chapter 6: Data Structures 43

6 Data Structures

Octave includes support for organizing data in structures. The current implementation

uses an associative array with indices limited to strings, but the syntax is more like C-style

structures. Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a = 1

x.b = [1, 2; 3, 4]

x.c = "string"

create a structure with three elements. To print the value of the structure, you can type its

name, just as for any other variable:

octave:2> x

x =

{

a = 1

b =

1 2

3 4

c = string

}

Note that Octave may print the elements in any order.

Structures may be copied.

octave:1> y = x

y =

{

a = 1

b =

1 2

3 4

c = string

}

Since structures are themselves values, structure elements may reference other structures.

The following statements change the value of the element b of the structure x to be a data

structure containing the single element d, which has a value of 3.

44 GNU Octave

octave:1> x.b.d = 3

x.b.d = 3

octave:2> x.b

ans =

{

d = 3

}

octave:3> x

x =

{

a = 1

b =

{

d = 3

}

c = string

}

Note that when Octave prints the value of a structure that contains other structures,

only a few levels are displayed. For example,

octave:1> a.b.c.d.e = 1;

octave:2> a

a =

{

b =

{

c = <structure>

}

}

This prevents long and confusing output from large deeply nested structures.

Built-in Variablestruct levels to print

You can tell Octave how many structure levels to display by setting the built-in

variable struct_levels_to_print. The default value is 2.

Functions can return structures. For example, the following function separates the real

and complex parts of a matrix and stores them in two elements of the same structure

variable.

octave:1> function y = f (x)

> y.re = real (x);

> y.im = imag (x);

> endfunction

When called with a complex-valued argument, f returns the data structure containing

the real and imaginary parts of the original function argument.

Chapter 6: Data Structures 45

octave:2> f (rand (3) + rand (3) * I);

ans =

{

im =

0.26475 0.14828

0.18436 0.83669

re =

0.040239 0.242160

0.238081 0.402523

}

Function return lists can include structure elements, and they may be indexed like any

other variable. For example,

octave:1> [x.u, x.s(2:3,2:3), x.v] = svd ([1, 2; 3, 4])

x.u =

-0.40455 -0.91451

-0.91451 0.40455

x.s =

0.00000 0.00000 0.00000

0.00000 5.46499 0.00000

0.00000 0.00000 0.36597

x.v =

-0.57605 0.81742

-0.81742 -0.57605

It is also possible to cycle through all the elements of a structure in a loop, using a

special form of the for statement (see Section 10.4 [The for Statement], page 75)

The following functions are available to give you information about structures.

Built-in Functionis struct (expr)

Return 1 if the value of the expression expr is a structure.

Built-in Functionstruct contains (expr, name)

Return 1 if the expression expr is a structure and it includes an element named

name. The �rst argument must be a structure and the second must be a string.

Built-in Functionstruct elements (struct)

Return a list of strings naming the elements of the structure struct. It is an

error to call struct_elements with an argument that is not a structure.

46 GNU Octave

Chapter 7: Variables 47

7 Variables

Variables let you give names to values and refer to them later. You have already seen

variables in many of the examples. The name of a variable must be a sequence of letters,

digits and underscores, but it may not begin with a digit. Octave does not enforce a limit

on the length of variable names, but it is seldom useful to have variables with names longer

than about 30 characters. The following are all valid variable names

x

x15

__foo_bar_baz__

fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two underscores are under-

stood to be reserved for internal use by Octave. You should not use them in code you write,

except to access Octave's documented internal variables and built-in symbolic constants.

Case is signi�cant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable's current value.

Variables are given new values with assignment operators and increment operators. See

Section 8.6 [Assignment Expressions], page 64.

A number of variables have special built-in meanings. For example, PWD holds the current

working directory, and pi names the ratio of the circumference of a circle to its diameter.

See Section 7.3 [Summary of Built-in Variables], page 50, for a list of all the prede�ned

variables. Some of these built-in symbols are constants and may not be changed. Others

can be used and assigned just like all other variables, but their values are also used or

changed automatically by Octave.

Variables in Octave do not have �xed types, so it is possible to �rst store a numeric

value in a variable and then to later use the same name to hold a string value in the same

program. Variables may not be used before they have been given a value. Doing so results

in an error.

7.1 Global Variables

A variable that has been declared global may be accessed from within a function body

without having to pass it as a formal parameter.

A variable may be declared global using a global declaration statement. The following

statements are all global declarations.

global a

global b = 2

global c = 3, d, e = 5

It is necessary declare a variable as global within a function body in order to access it.

For example,

global x

function f ()

x = 1;

endfunction

f ()

48 GNU Octave

does not set the value of the global variable x to 1. In order to change the value of the

global variable x, you must also declare it to be global within the function body, like this

function f ()

global x;

x = 1;

endfunction

Passing a global variable in a function parameter list will make a local copy and not

modify the global value. For example, given the function

function f (x)

x = 0

endfunction

and the de�nition of x as a global variable at the top level,

global x = 13

the expression

f (x)

will display the value of x from inside the function as 0, but the value of x at the top level

remains unchanged, because the function works with a copy of its argument.

Built-in Variablewarn comma in global decl

If the value of warn_comma_in_global_decl is nonzero, a warning is issued for

statements like

global a = 1, b

which makes the variables a and b global and assigns the value 1 to the vari-

able a, because in this context, the comma is not interpreted as a statement

separator.

The default value of warn_comma_in_global_decl is nonzero.

Built-in Functionis global (name)

Return 1 if name is globally visible. Otherwise, return 0. For example,

global x

is_global ("x")

)

1

7.2 Status of Variables

Commandclear options pattern : : :

Delete the names matching the given patterns from the symbol table. The

pattern may contain the following special characters:

? Match any single character.

* Match zero or more characters.

[list] Match the list of characters speci�ed by list. If the �rst character

is ! or ^, match all characters except those speci�ed by list. For

example, the pattern `[a-zA-Z]' will match all lower and upper

case alphabetic characters.

Chapter 7: Variables 49

For example, the command

clear foo b*r

clears the name foo and all names that begin with the letter b and end with

the letter r.

If clear is called without any arguments, all user-de�ned variables (local and

global) are cleared from the symbol table. If clear is called with at least

one argument, only the visible names matching the arguments are cleared.

For example, suppose you have de�ned a function foo, and then hidden it by

performing the assignment foo = 2. Executing the command clear foo once

will clear the variable de�nition and restore the de�nition of foo as a function.

Executing clear foo a second time will clear the function de�nition.

This command may not be used within a function body.

Commandwho options pattern : : :

Commandwhos options pattern : : :

List currently de�ned symbols matching the given patterns. The following

are valid options. They may be shortened to one character but may not be

combined.

-all List all currently de�ned symbols.

-builtins

List built-in variables and functions. This includes all currently

compiled function �les, but does not include all function �les that

are in the LOADPATH.

-functions

List user-de�ned functions.

-long Print a long listing including the type and dimensions of any sym-

bols. The symbols in the �rst column of output indicate whether

it is possible to rede�ne the symbol, and whether it is possible for

it to be cleared.

-variables

List user-de�ned variables.

Valid patterns are the same as described for the clear command above. If

no patterns are supplied, all symbols from the given category are listed. By

default, only user de�ned functions and variables visible in the local scope are

displayed.

The command whos is equivalent to who -long.

Built-in Functionexist (name)

Return 1 if the name exists as a variable, 2 if the name (after appending `.m')

is a function �le in the path, 3 if the name is a `.oct' �le in the path, or 5 if

the name is a built-in function. Otherwise, return 0.

Built-in Functiondocument (symbol, text)

Set the documentation string for symbol to text.

50 GNU Octave

Commandtype options name : : :

Display the de�nition of each name that refers to a function.

Normally also displays if each name is user-de�ned or builtin; the -q option

suppresses this behaviour.

Currently, Octave can only display functions that can be compiled cleanly,

because it uses its internal representation of the function to recreate the program

text.

Comments are not displayed because Octave's parser currently discards them

as it converts the text of a function �le to its internal representation. This

problem may be �xed in a future release.

Commandwhich name : : :

Display the type of each name. If name is de�ned from a function �le, the full

name of the �le is also displayed.

7.3 Summary of Built-in Variables

Here is a summary of all of Octave's built-in variables along with cross references to

additional information and their default values. In the following table octave-home stands

for the root directory where all of Octave is installed (the default is `', version stands for

the Octave version number (for example, 2.0.5) and arch stands for the type of system for

which Octave was compiled (for example, i486-OS/2).

EDITOR See Section 2.4.5 [Commands For History], page 20.

Default value: "emacs".

EXEC_PATH

See Section 29.3 [Controlling Subprocesses], page 186.

Default value: ":$PATH".

INFO_FILE

See Section 2.3 [Getting Help], page 17.

Default value: "octave-home/info/octave.info".

INFO_PROGRAM

See Section 2.3 [Getting Help], page 17.

Default value: "octave-home/libexec/octave/version/exec/arch/info".

LOADPATH See Section 11.6 [Function Files], page 88.

Default value: ".:octave-home/lib/version".

OCTAVE_HOME

Default value: "".

PAGER See Chapter 13 [Input and Output], page 97.

Default value: "less", or "more".

PS1 See Section 2.4.6 [Customizing the Prompt], page 22.

Default value: "\s:\#> ".

Chapter 7: Variables 51

PS2 See Section 2.4.6 [Customizing the Prompt], page 22.

Default value: "> ".

PS4 See Section 2.4.6 [Customizing the Prompt], page 22.

Default value: "+ ".

automatic_replot

See Section 14.1 [Two-Dimensional Plotting], page 117.

Default value: 0.

beep_on_error

See Chapter 12 [Error Handling], page 95.

Default value: 0.

completion_append_char

See Section 2.4.4 [Commands For Completion], page 20.

Default value: " ".

default_eval_print_flag

See Chapter 9 [Evaluation], page 69.

Default value: 1.

default_return_value

See Section 11.2 [Multiple Return Values], page 83.

Default value: [].

default_save_format

See Section 13.1.3 [Simple File I/O], page 101.

Default value: "ascii".

do_fortran_indexing

See Section 8.1 [Index Expressions], page 55.

Default value: 0.

define_all_return_values

See Section 11.2 [Multiple Return Values], page 83.

Default value: 0.

empty_list_elements_ok

See Section 4.1.1 [Empty Matrices], page 34.

Default value: "warn".

gnuplot_binary

See Section 14.3 [Three-Dimensional Plotting], page 123.

Default value: "gnuplot".

history_file

See Section 2.4.5 [Commands For History], page 20.

Default value: "~/.octave_hist".

52 GNU Octave

history_size

See Section 2.4.5 [Commands For History], page 20.

Default value: 1024.

ignore_function_time_stamp

See Section 11.6 [Function Files], page 88.

Default value: "system".

implicit_str_to_num_ok

See Section 5.3 [String Conversions], page 40.

Default value: 0.

ok_to_lose_imaginary_part

See Section 15.3 [Special Utility Matrices], page 131.

Default value: "warn".

output_max_field_width

See Section 4.1 [Matrices], page 31.

Default value: 10.

output_precision

See Section 4.1 [Matrices], page 31.

Default value: 5.

page_screen_output

See Chapter 13 [Input and Output], page 97.

Default value: 1.

prefer_column_vectors

See Section 8.1 [Index Expressions], page 55.

Default value: 0.

print_answer_id_name

See Section 13.1.1 [Terminal Output], page 98.

Default value: 1.

print_empty_dimensions

See Section 4.1.1 [Empty Matrices], page 34.

Default value: 1.

resize_on_range_error

See Section 8.1 [Index Expressions], page 55.

Default value: 1.

return_last_computed_value

See Section 11.5 [Returning From a Function], page 87.

Default value: 0.

save_precision

See Section 13.1.3 [Simple File I/O], page 101.

Default value: 17.

Chapter 7: Variables 53

saving_history

See Section 2.4.5 [Commands For History], page 20.

Default value: 1.

silent_functions

See Section 11.1 [De�ning Functions], page 81.

Default value: 0.

split_long_rows

See Section 4.1 [Matrices], page 31.

Default value: 1.

struct_levels_to_print

See Chapter 6 [Data Structures], page 43.

Default value: 2.

suppress_verbose_help_message

See Section 2.3 [Getting Help], page 17.

Default value: 1.

treat_neg_dim_as_zero

See Section 15.3 [Special Utility Matrices], page 131.

Default value: 0.

warn_assign_as_truth_value

See Section 10.1 [The if Statement], page 71.

Default value: 1.

warn_comma_in_global_decl

See Section 7.1 [Global Variables], page 47.

Default value: 1.

warn_divide_by_zero

See Section 8.3 [Arithmetic Ops], page 60.

Default value: 1.

warn_function_name_clash

See Section 11.6 [Function Files], page 88.

Default value: 1.

whitespace_in_literal_matrix

See Section 4.1 [Matrices], page 31.

Default value: "".

7.4 Defaults from the Environment

Octave uses the values of the following environment variables to set the default values

for the corresponding built-in variables. In addition, the values from the environment may

be overridden by command-line arguments. See Section 2.1.1 [Command Line Options],

page 13.

54 GNU Octave

EDITOR See Section 2.4.5 [Commands For History], page 20.

Built-in variable: EDITOR.

OCTAVE_EXEC_PATH

See Section 29.3 [Controlling Subprocesses], page 186.

Built-in variable: EXEC_PATH. Command-line argument: --exec-path.

OCTAVE_PATH

See Section 11.6 [Function Files], page 88.

Built-in variable: LOADPATH. Command-line argument: --path.

OCTAVE_INFO_FILE

See Section 2.3 [Getting Help], page 17.

Built-in variable: INFO_FILE. Command-line argument: --info-file.

OCTAVE_INFO_PROGRAM

See Section 2.3 [Getting Help], page 17.

Built-in variable: INFO_PROGRAM. Command-line argument: --info-program.

OCTAVE_HISTSIZE

See Section 2.4.5 [Commands For History], page 20.

Built-in variable: history_size.

OCTAVE_HISTFILE

See Section 2.4.5 [Commands For History], page 20.

Built-in variable: history_file.

Chapter 8: Expressions 55

8 Expressions

Expressions are the basic building block of statements in Octave. An expression evaluates

to a value, which you can print, test, store in a variable, pass to a function, or assign a new

value to a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements

contain one or more expressions which specify data to be operated on. As in other languages,

expressions in Octave include variables, array references, constants, and function calls, as

well as combinations of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a matrix or

vector.

Indices may be scalars, vectors, ranges, or the special operator `:', which may be used

to select entire rows or columns.

Vectors are indexed using a single expression. Matrices require two indices unless the

value of the built-in variable do_fortran_indexing is nonzero, in which case matrices may

also be indexed by a single expression.

Built-in Variabledo fortran indexing

If the value of do_fortran_indexing is nonzero, Octave allows you to select

elements of a two-dimensional matrix using a single index by treating the matrix

as a single vector created from the columns of the matrix. The default value is

0.

Given the matrix

a = [1, 2; 3, 4]

all of the following expressions are equivalent

a (1, [1, 2])

a (1, 1:2)

a (1, :)

and select the �rst row of the matrix.

A special form of indexing may be used to select elements of a matrix or vector. If

the indices are vectors made up of only ones and zeros, the result is a new matrix whose

elements correspond to the elements of the index vector that are equal to one. For example,

a = [1, 2; 3, 4];

a ([1, 0], :)

selects the �rst row of the matrix a.

This operation can be useful for selecting elements of a matrix based on some condition,

since the comparison operators return matrices of ones and zeros.

This special zero-one form of indexing leads to a conict with the standard indexing

operation. For example, should the following statements

56 GNU Octave

a = [1, 2; 3, 4];

a ([1, 1], :)

return the original matrix, or the matrix formed by selecting the �rst row twice? Although

this conict is not likely to arise very often in practice, you may select the behavior you

prefer by setting the built-in variable prefer_zero_one_indexing.

Built-in Variableprefer zero one indexing

If the value of prefer_zero_one_indexing is nonzero, Octave will perform

zero-one style indexing when there is a conict with the normal indexing rules.

See Section 8.1 [Index Expressions], page 55. For example, given a matrix

a = [1, 2, 3, 4]

with prefer_zero_one_indexing is set to nonzero, the expression

a ([1, 1, 1, 1])

results in the matrix [1, 2, 3, 4]. If the value of prefer_zero_one_

indexing set to 0, the result would be the matrix [1, 1, 1, 1].

In the �rst case, Octave is selecting each element corresponding to a `1' in the

index vector. In the second, Octave is selecting the �rst element multiple times.

The default value for prefer_zero_one_indexing is 0.

Finally, indexing a scalar with a vector of ones can be used to create a vector the same

size as the the index vector, with each element equal to the value of the original scalar. For

example, the following statements

a = 13;

a ([1, 1, 1, 1])

produce a vector whose four elements are all equal to 13.

Similarly, indexing a scalar with two vectors of ones can be used to create a matrix. For

example the following statements

a = 13;

a ([1, 1], [1, 1, 1])

create a 2 by 3 matrix with all elements equal to 13.

This is an obscure notation and should be avoided. It is better to use the function ones

to generate a matrix of the appropriate size whose elements are all one, and then to scale

it to produce the desired result. See Section 15.3 [Special Utility Matrices], page 131.

Built-in Variableprefer column vectors

If prefer_column_vectors is nonzero, operations like

for i = 1:10

a (i) = i;

endfor

(for a previously unde�ned) produce column vectors. Otherwise, row vectors

are preferred. The default value is 0.

If a variable is already de�ned to be a vector (a matrix with a single row or

column), the original orientation is respected, regardless of the value of prefer_

column_vectors.

Chapter 8: Expressions 57

Built-in Variableresize on range error

If the value of resize_on_range_error is nonzero, expressions like

for i = 1:10

a (i) = sqrt (i);

endfor

(for a previously unde�ned) result in the variable a being resized to be just

large enough to hold the new value. New elements that have not been given

a value are set to zero. If the value of resize_on_range_error is 0, an error

message is printed and control is returned to the top level. The default value

is 1.

Note that it is quite ine�cient to create a vector using a loop like the one shown in the

example above. In this particular case, it would have been much more e�cient to use the

expression

a = sqrt (1:10);

thus avoiding the loop entirely. In cases where a loop is still required, or a number of values

must be combined to form a larger matrix, it is generally much faster to set the size of

the matrix �rst, and then insert elements using indexing commands. For example, given a

matrix a,

[nr, nc] = size (a);

x = zeros (nr, n * nc);

for i = 1:n

x(:,(i-1)*n+1:i*n) = a;

endfor

is considerably faster than

x = a;

for i = 1:n-1

x = [x, a];

endfor

particularly for large matrices because Octave does not have to repeatedly resize the result.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask

for it by name at any point in the program. For example, the function sqrt computes the

square root of a number.

A �xed set of functions are built-in, which means they are available in every Octave

program. The sqrt function is one of these. In addition, you can de�ne your own functions.

See Chapter 11 [Functions and Scripts], page 81, for information about how to do this.

The way to use a function is with a function call expression, which consists of the function

name followed by a list of arguments in parentheses. The arguments are expressions which

give the raw materials for the calculation that the function will do. When there is more

than one argument, they are separated by commas. If there are no arguments, you can

omit the parentheses, but it is a good idea to include them anyway, to clearly indicate that

a function call was intended. Here are some examples:

58 GNU Octave

sqrt (x^2 + y^2) # One argument

ones (n, m) # Two arguments

rand () # No arguments

Each function expects a particular number of arguments. For example, the sqrt function

must be called with a single argument, the number to take the square root of:

sqrt (argument)

Some of the built-in functions take a variable number of arguments, depending on the

particular usage, and their behavior is di�erent depending on the number of arguments

supplied.

Like every other expression, the function call has a value, which is computed by the

function based on the arguments you give it. In this example, the value of sqrt (argument)

is the square root of the argument. A function can also have side e�ects, such as assigning

the values of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example,

the following statement

[u, s, v] = svd (a)

computes the singular value decomposition of the matrix a and assigns the three result

matrices to u, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, and is

allowed to be a list of variable names or index expressions. See also Section 8.1 [Index

Expressions], page 55, and Section 8.6 [Assignment Ops], page 64.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that

each argument in a function call is evaluated and assigned to a temporary location in

memory before being passed to the function. There is currently no way to specify that a

function parameter should be passed by reference instead of by value. This means that it is

impossible to directly alter the value of function parameter in the calling function. It can

only change the local copy within the function body. For example, the function

function f (x, n)

while (n-- > 0)

disp (x);

endwhile

endfunction

displays the value of the �rst argument n times. In this function, the variable n is used as a

temporary variable without having to worry that its value might also change in the calling

function. Call by value is also useful because it is always possible to pass constants for any

function parameter without �rst having to determine that the function will not attempt to

modify the parameter.

The caller may use a variable as the expression for the argument, but the called function

does not know this: it only knows what value the argument had. For example, given a

function called as

Chapter 8: Expressions 59

foo = "bar";

fcn (foo)

you should not think of the argument as being \the variable foo." Instead, think of the

argument as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not

copied unnecessarily. For example,

x = rand (1000);

f (x);

does not actually force two 1000 by 1000 element matrices to exist unless the function f

modi�es the value of its argument. Then Octave must create a copy to avoid changing the

value outside the scope of the function f, or attempting (and probably failing!) to modify

the value of a constant or the value of a temporary result.

8.2.2 Recursion

With some restrictions

1

, recursive function calls are allowed. A recursive function is one

which calls itself, either directly or indirectly. For example, here is an ine�cient

2

way to

compute the factorial of a given integer:

function retval = fact (n)

if (n > 0)

retval = n * fact (n-1);

else

retval = 1;

endif

endfunction

This function is recursive because it calls itself directly. It eventually terminates because

each time it calls itself, it uses an argument that is one less than was used for the previous

call. Once the argument is no longer greater than zero, it does not call itself, and the

recursion ends.

There is currently no limit on the recursion depth, so in�nite recursion is possible. If

this happens, Octave will consume more and more memory attempting to store intermediate

values for each function call context until there are no more resources available. This is

obviously undesirable, and will probably be �xed in some future version of Octave by

allowing users to specify a maximum allowable recursion depth.

1

Some of Octave's function are implemented in terms of functions that cannot be called

recursively. For example, the ODE solver lsode is ultimately implemented in a Fortran

subroutine that cannot be called recursively, so lsode should not be called either directly

or indirectly from within the user-supplied function that lsode requires. Doing so will

result in unde�ned behavior.

2

It would be much better to use prod (1:n), or gamma (n+1) instead, after �rst checking

to ensure that the value n is actually a positive integer.

60 GNU Octave

8.3 Arithmetic Operators

The following arithmetic operators are available, and work on scalars and matrices.

x + y Addition. If both operands are matrices, the number of rows and columns must

both agree. If one operand is a scalar, its value is added to all the elements of

the other operand.

x .+ y Element by element addition. This operator is equivalent to +.

x - y Subtraction. If both operands are matrices, the number of rows and columns

of both must agree.

x .- y Element by element subtraction. This operator is equivalent to -.

x * y Matrix multiplication. The number of columns of x must agree with the number

of rows of y.

x .* y Element by element multiplication. If both operands are matrices, the number

of rows and columns must both agree.

x / y Right division. This is conceptually equivalent to the expression

(inverse (y') * x')'

but it is computed without forming the inverse of y'.

If the system is not square, or if the coe�cient matrix is singular, a minimum

norm solution is computed.

x ./ y Element by element right division.

x \ y Left division. This is conceptually equivalent to the expression

inverse (x) * y

but it is computed without forming the inverse of x.

If the system is not square, or if the coe�cient matrix is singular, a minimum

norm solution is computed.

x .\ y Element by element left division. Each element of y is divided by each corre-

sponding element of x.

x ^ y

x ** y Power operator. If x and y are both scalars, this operator returns x raised to

the power y. If x is a scalar and y is a square matrix, the result is computed

using an eigenvalue expansion. If x is a square matrix. the result is computed

by repeated multiplication if y is an integer, and by an eigenvalue expansion if

y is not an integer. An error results if both x and y are matrices.

The implementation of this operator needs to be improved.

x .^ y

x .** y Element by element power operator. If both operands are matrices, the number

of rows and columns must both agree.

-x Negation.

+x Unary plus. This operator has no e�ect on the operand.

Chapter 8: Expressions 61

x' Complex conjugate transpose. For real arguments, this operator is the same as

the transpose operator. For complex arguments, this operator is equivalent to

the expression

conj (x.')

x.' Transpose.

Note that because Octave's element by element operators begin with a `.', there is a

possible ambiguity for statements like

1./m

because the period could be interpreted either as part of the constant or as part of the

operator. To resolve this conict, Octave treats the expression as if you had typed

(1) ./ m

and not

(1.) / m

Although this is inconsistent with the normal behavior of Octave's lexer, which usually

prefers to break the input into tokens by preferring the longest possible match at any given

point, it is more useful in this case.

Built-in Variablewarn divide by zero

If the value of warn_divide_by_zero is nonzero, a warning is issued when

Octave encounters a division by zero. If the value is 0, the warning is omitted.

The default value is 1.

8.4 Comparison Operators

Comparison operators compare numeric values for relationships such as equality. They

are written using relational operators.

All of Octave's comparison operators return a value of 1 if the comparison is true, or 0

if it is false. For matrix values, they all work on an element-by-element basis. For example,

[1, 2; 3, 4] == [1, 3; 2, 4]

)

1 0

0 1

If one operand is a scalar and the other is a matrix, the scalar is compared to each

element of the matrix in turn, and the result is the same size as the matrix.

x < y True if x is less than y.

x <= y True if x is less than or equal to y.

x == y True if x is equal to y.

x >= y True if x is greater than or equal to y.

x > y True if x is greater than y.

x != y

x ~= y

x <> y True if x is not equal to y.

String comparisons may also be performed with the strcmp function, not with the com-

parison operators listed above. See Chapter 5 [Strings], page 37.

62 GNU Octave

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions

using the boolean operators \or" (`|'), \and" (`&'), and \not" (`!'), along with parentheses

to control nesting. The truth of the boolean expression is computed by combining the truth

values of the corresponding elements of the component expressions. A value is considered

to be false if it is zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions

can be used. They can be used in if and while statements. However, if a matrix value

used as the condition in an if or while statement is only true if all of its elements are

nonzero.

Like comparison operations, each element of an element-by-element boolean expression

also has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean

expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.

boolean1 & boolean2

Elements of the result are true if both corresponding elements of boolean1 and

boolean2 are true.

boolean1 | boolean2

Elements of the result are true if either of the corresponding elements of

boolean1 or boolean2 is true.

! boolean

~ boolean Each element of the result is true if the corresponding element of boolean is

false.

For matrix operands, these operators work on an element-by-element basis. For example,

the expression

[1, 0; 0, 1] & [1, 0; 2, 3]

returns a two by two identity matrix.

For the binary operators, the dimensions of the operands must conform if both are

matrices. If one of the operands is a scalar and the other a matrix, the operator is applied

to the scalar and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions boolean1 and

boolean2 are evaluated before computing the result. This can make a di�erence when the

expressions have side e�ects. For example, in the expression

a & b++

the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-

valued operands.

Chapter 8: Expressions 63

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Oc-

tave's element-by-element boolean operators are often su�cient for performing most logical

operations. However, it is sometimes desirable to stop evaluating a boolean expression as

soon as the overall truth value can be determined. Octave's short-circuit boolean operators

work this way.

boolean1 && boolean2

The expression boolean1 is evaluated and converted to a scalar using the equiv-

alent of the operation all (all (boolean1)). If it is false, the result of the over-

all expression is 0. If it is true, the expression boolean2 is evaluated and con-

verted to a scalar using the equivalent of the operation all (all (boolean1)).

If it is true, the result of the overall expression is 1. Otherwise, the result of

the overall expression is 0.

boolean1 || boolean2

The expression boolean1 is evaluated and converted to a scalar using the equiva-

lent of the operation all (all (boolean1)). If it is true, the result of the overall

expression is 1. If it is false, the expression boolean2 is evaluated and converted

to a scalar using the equivalent of the operation all (all (boolean1)). If it

is true, the result of the overall expression is 1. Otherwise, the result of the

overall expression is 0.

The fact that both operands may not be evaluated before determining the overall truth

value of the expression can be important. For example, in the expression

a && b++

the value of the variable b is only incremented if the variable a is nonzero.

This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, c)

if (nargin > 2 && isstr (c))

: : :

instead of having to use two if statements to avoid attempting to evaluate an argument

that doesn't exist. For example, without the short-circuit feature, it would be necessary to

write

function f (a, b, c)

if (nargin > 2)

if (isstr (c))

: : :

Writing

function f (a, b, c)

if (nargin > 2 & isstr (c))

: : :

would result in an error if f were called with one or two arguments because Octave would

be forced to try to evaluate both of the operands for the operator `&'.

64 GNU Octave

8.6 Assignment Expressions

An assignment is an expression that stores a new value into a variable. For example,

the following expression assigns the value 1 to the variable z:

z = 1

After this expression is executed, the variable z has the value 1. Whatever old value z

had before the assignment is forgotten. The `=' sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would

store the value "this food is good" in the variable message:

thing = "food"

predicate = "good"

message = ["this " , thing , " is " , predicate]

(This also illustrates concatenation of strings.)

Most operators (addition, concatenation, and so on) have no e�ect except to compute

a value. If you ignore the value, you might as well not use the operator. An assignment

operator is di�erent. It does produce a value, but even if you ignore the value, the assignment

still makes itself felt through the alteration of the variable. We call this a side e�ect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables],

page 47). It can also be an element of a matrix (see Section 8.1 [Index Expressions], page 55)

or a list of return values (see Section 8.2 [Calling Functions], page 57). These are all called

lvalues, which means they can appear on the left-hand side of an assignment operator. The

right-hand operand may be any expression. It produces the new value which the assignment

stores in the speci�ed variable, matrix element, or list of return values.

It is important to note that variables do not have permanent types. The type of a

variable is simply the type of whatever value it happens to hold at the moment. In the

following program fragment, the variable foo has a numeric value at �rst, and a string value

later on:

octave:13> foo = 1

foo = 1

octave:13> foo = "bar"

foo = bar

When the second assignment gives foo a string value, the fact that it previously had a

numeric value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced

by the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) = 5

sets all the elements in the second column of a to 5.

Assigning an empty matrix `[]' works in most cases to allow you to delete rows or

columns of matrices and vectors. See Section 4.1.1 [Empty Matrices], page 34. For example,

given a 4 by 5 matrix A, the assignment

A (3, :) = []

deletes the third row of A, and the assignment

Chapter 8: Expressions 65

A (:, 1:2:5) = []

deletes the �rst, third, and �fth columns.

An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the

value 1. One consequence of this is that you can write multiple assignments together:

x = y = z = 0

stores the value 0 in all three variables. It does this because the value of z = 0, which is 0,

is stored into y, and then the value of y = z = 0, which is 0, is stored into x.

This is also true of assignments to lists of values, so the following is a valid expression

[a, b, c] = [u, s, v] = svd (a)

that is exactly equivalent to

[u, s, v] = svd (a)

a = u

b = s

c = v

In expressions like this, the number of values in each part of the expression need not

match. For example, the expression

[a, b, c, d] = [u, s, v] = svd (a)

is equivalent to the expression above, except that the value of the variable `d' is left un-

changed, and the expression

[a, b] = [u, s, v] = svd (a)

is equivalent to

[u, s, v] = svd (a)

a = u

b = s

You can use an assignment anywhere an expression is called for. For example, it is valid

to write x != (y = 1) to set y to 1 and then test whether x equals 1. But this style tends

to make programs hard to read. Except in a one-shot program, you should rewrite it to get

rid of such nesting of assignments. This is never very hard.

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to

increment a variable is written as `++'. It may be used to increment a variable either before

or after taking its value.

For example, to pre-increment the variable x, you would write ++x. This would add one

to x and then return the new value of x as the result of the expression. It is exactly the

same as the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x,

but returns the value that x had prior to incrementing it. For example, if x is equal to 2,

the result of the expression x++ is 2, and the new value of x is 3.

For matrix and vector arguments, the increment and decrement operators work on each

element of the operand.

Here is a list of all the increment and decrement expressions.

66 GNU Octave

++x This expression increments the variable x. The value of the expression is the

new value of x. It is equivalent to the expression x = x + 1.

--x This expression decrements the variable x. The value of the expression is the

new value of x. It is equivalent to the expression x = x - 1.

x++ This expression causes the variable x to be incremented. The value of the

expression is the old value of x.

x-- This expression causes the variable x to be decremented. The value of the

expression is the old value of x.

It is not currently possible to increment index expressions. For example, you might

expect that the expression v(4)++ would increment the fourth element of the vector v, but

instead it results in a parse error. This problem may be �xed in a future release of Octave.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when di�erent operators

appear close by in one expression. For example, `*' has higher precedence than `+'. Thus,

the expression a + b * c means to multiply b and c, and then add a to the product (i.e., a

+ (b * c)).

You can overrule the precedence of the operators by using parentheses. You can think

of the precedence rules as saying where the parentheses are assumed if you do not write

parentheses yourself. In fact, it is wise to use parentheses whenever you have an unusual

combination of operators, because other people who read the program may not remember

what the precedence is in this case. You might forget as well, and then you too could make

a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups

�rst, except for the assignment and exponentiation operators, which group in the opposite

order. Thus, the expression a - b + c groups as (a - b) + c, but the expression a = b = c

groups as a = (b = c).

The precedence of pre�x unary operators is important when another operator follows

the operand. For example, -x^2 means -(x^2), because `-' has lower precedence than `^'.

Here is a table of the operators in Octave, in order of increasing precedence.

statement separators

`;', `,'.

assignment

`='. This operator groups right to left.

logical "or" and "and"

`||', `&&'.

element-wise "or" and "and"

`|', `&'.

relational

`<', `<=', `==', `>=', `>', `!=', `~=', `<>'.

Chapter 8: Expressions 67

colon `:'.

add, subtract

`+', `-'.

multiply, divide

`*', `/', `\', `.\', `.*', `./'.

transpose

`'', `.''

unary plus, minus, increment, decrement, and ``not''

`+', `-', `++', `--', `!', `~'.

exponentiation

`^', `**', `.^', `.**'.

68 GNU Octave

Chapter 9: Evaluation 69

9 Evaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by

asking Octave to interpret commands that you have saved in a �le.

Sometimes, you may �nd it necessary to evaluate an expression that has been computed

and stored in a string, or use a string as the name of a function to call. The eval and

feval functions allow you to do just that, and are necessary in order to evaluate commands

that are not known until run time, or to write functions that will need to call user-supplied

functions.

Built-in Functioneval (command)

Parse the string command and evaluate it as if it were an Octave program,

returning the last value computed. The command is evaluated in the current

context, so any results remain available after eval returns. For example,

eval ("a = 13")

a

a = 13

)

13

In this case, the value of the evaluated expression is printed and it is also

returned returned from eval. Just as with any other expression, you can turn

printing o� by ending the expression in a semicolon. For example,

eval ("a = 13;")

)

13

In this example, the variable a has been given the value 13, but the value of

the expression is not printed. You can also turn o� automatic printing for all

expressions executed by eval using the variable default_eval_print_flag.

Built-in Variabledefault eval print ag

If the value of this variable is nonzero, Octave prints the results of commands

executed by eval that do not end with semicolons. If it is zero, automatic

printing is suppressed. The default value is 1.

Built-in Functionfeval (name, : : :)

Evaluate the function named name. Any arguments after the �rst are passed

on to the named function. For example,

feval ("acos", -1)

)

3.1416

calls the function acos with the argument `-1'.

The function feval is necessary in order to be able to write functions that

call user-supplied functions, because Octave does not have a way to declare a

pointer to a function (like C) or to declare a special kind of variable that can

be used to hold the name of a function (like EXTERNAL in Fortran). Instead,

you must refer to functions by name, and use feval to call them.

Here is a simple-minded function using feval that �nds the root of a user-supplied

function of one variable using Newton's method.

70 GNU Octave

function result = newtroot (fname, x)

usage: newtroot (fname, x)

#

fname : a string naming a function f(x).

x : initial guess

delta = tol = sqrt (eps);

maxit = 200;

fx = feval (fname, x);

for i = 1:maxit

if (abs (fx) < tol)

result = x;

return;

else

fx_new = feval (fname, x + delta);

deriv = (fx_new - fx) / delta;

x = x - fx / deriv;

fx = fx_new;

endif

endfor

result = x;

endfunction

Note that this is only meant to be an example of calling user-supplied functions and

should not be taken too seriously. In addition to using a more robust algorithm, any serious

code would check the number and type of all the arguments, ensure that the supplied

function really was a function, etc.

Chapter 10: Statements 71

10 Statements

Statements may be a simple constant expression or a complicated list of nested loops

and conditional statements.

Control statements such as if, while, and so on control the ow of execution in Octave

programs. All the control statements start with special keywords such as if and while,

to distinguish them from simple expressions. Many control statements contain other state-

ments; for example, the if statement contains another statement which may or may not be

executed.

Each control statement has a corresponding end statement that marks the end of the end

of the control statement. For example, the keyword endifmarks the end of an if statement,

and endwhile marks the end of a while statement. You can use the keyword end anywhere

a more speci�c end keyword is expected, but using the more speci�c keywords is preferred

because if you use them, Octave is able to provide better diagnostics for mismatched or

missing end tokens.

The list of statements contained between keywords like if or while and the correspond-

ing end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave's decision-making statement. There are three basic forms

of an if statement. In its simplest form, it looks like this:

if (condition)

then-body

endif

condition is an expression that controls what the rest of the statement will do. The then-

body is executed only if condition is true.

The condition in an if statement is considered true if its value is non-zero, and false if

its value is zero. If the value of the conditional expression in an if statement is a vector or

a matrix, it is considered true only if all of the elements are non-zero.

The second form of an if statement looks like this:

if (condition)

then-body

else

else-body

endif

If condition is true, then-body is executed; otherwise, else-body is executed.

Here is an example:

if (rem (x, 2) == 0)

printf ("x is even\n");

else

printf ("x is odd\n");

endif

72 GNU Octave

In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is

divisible by 2), then the �rst printf statement is evaluated, otherwise the second printf

statement is evaluated.

The third and most general form of the if statement allows multiple decisions to be

combined in a single statement. It looks like this:

if (condition)

then-body

elseif (condition)

elseif-body

else

else-body

endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is

found to be true, its corresponding body is executed. If none of the conditions are true and

the else clause is present, its body is executed. Only one else clause may appear, and it

must be the last part of the statement.

In the following example, if the �rst condition is true (that is, the value of x is divisible

by 2), then the �rst printf statement is executed. If it is false, then the second condition

is tested, and if it is true (that is, the value of x is divisible by 3), then the second printf

statement is executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)

printf ("x is even\n");

elseif (rem (x, 3) == 0)

printf ("x is odd and divisible by 3\n");

else

printf ("x is odd\n");

endif

Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If

it is, the space between the else and if will tell Octave to treat this as a new if statement

within another if statement's else clause. For example, if you write

if (c1)

body-1

else if (c2)

body-2

endif

Octave will expect additional input to complete the �rst if statement. If you are using

Octave interactively, it will continue to prompt you for additional input. If Octave is reading

this input from a �le, it may complain about missing or mismatched end statements, or, if

you have not used the more speci�c end statements (endif, endfor, etc.), it may simply

produce incorrect results, without producing any warning messages.

It is much easier to see the error if we rewrite the statements above like this,

Chapter 10: Statements 73

if (c1)

body-1

else

if (c2)

body-2

endif

using the indentation to show how Octave groups the statements. See Chapter 11 [Functions

and Scripts], page 81.

Built-in Variablewarn assign as truth value

If the value of warn_assign_as_truth_value is nonzero, a warning is issued

for statements like

if (s = t)

...

since such statements are not common, and it is likely that the intent was to

write

if (s == t)

...

instead.

There are times when it is useful to write code that contains assignments within

the condition of a while or if statement. For example, statements like

while (c = getc())

...

are common in C programming.

It is possible to avoid all warnings about such statements by setting warn_

assign_as_truth_value to 0, but that may also let real errors like

if (x = 1) # intended to test (x == 1)!

...

slip by.

In such cases, it is possible suppress errors for speci�c statements by writing

them with an extra set of parentheses. For example, writing the previous ex-

ample as

while ((c = getc()))

...

will prevent the warning from being printed for this statement, while allowing

Octave to warn about other assignments used in conditional contexts.

The default value of warn_assign_as_truth_value is 1.

10.2 The switch Statement

The switch statement was introduced in Octave 2.0.5. It should be considered experi-

mental, and details of the implementation may change slightly in future versions of Octave.

If you have comments or would like to share your experiences in trying to use this new com-

mand in real programs, please send them to hoctave-maintainers@bevo.che.wisc.edui.

(But if you think you've found a bug, please report it to hbug-octave@bevo.che.wisc.edui.

74 GNU Octave

The general form of the switch statement is

switch expression

case label

command list

case label

command list

: : :

otherwise

command list

endswitch

� The identi�ers switch, case, otherwise, and endswitch are now keywords.

� The label may be any expression.

� Duplicate label values are not detected. The command list corresponding to the �rst

match will be executed.

� You must have at least one case label command list clause.

� The otherwise command list clause is optional.

� As with all other speci�c end keywords, endswitch may be replaced by end, but you

can get better diagnostics if you use the speci�c forms.

� Cases are exclusive, so they don't `fall through' as do the cases in the switch statement

of the C language.

� The command list elements are not optional. Making the list optional would have

meant requiring a separator between the label and the command list. Otherwise,

things like

switch (foo)

case (1) -2

: : :

would produce surprising results, as would

switch (foo)

case (1)

case (2)

doit ();

: : :

particularly for C programmers.

� The implementation is simple-minded and currently o�ers no real performance im-

provement over an equivalent if block, even if all the labels are integer constants.

Perhaps a future variation on this could detect all constant integer labels and improve

performance by using a jump table.

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed

two or more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes

a statement as long as a condition is true. As with the condition in an if statement, the

Chapter 10: Statements 75

condition in a while statement is considered true if its value is non-zero, and false if its

value is zero. If the value of the conditional expression in a while statement is a vector or

a matrix, it is considered true only if all of the elements are non-zero.

Octave's while statement looks like this:

while (condition)

body

endwhile

Here body is a statement or list of statements that we call the body of the loop, and

condition is an expression that controls how long the loop keeps running.

The �rst thing the while statement does is test condition. If condition is true, it executes

the statement body. After body has been executed, condition is tested again, and if it is

still true, body is executed again. This process repeats until condition is no longer true. If

condition is initially false, the body of the loop is never executed.

This example creates a variable fib that contains the �rst ten elements of the Fibonacci

sequence.

fib = ones (1, 10);

i = 3;

while (i <= 10)

fib (i) = fib (i-1) + fib (i-2);

i++;

endwhile

Here the body of the loop contains two statements.

The loop works like this: �rst, the value of i is set to 3. Then, the while tests whether

i is less than or equal to 10. This is the case when i equals 3, so the value of the i-th

element of fib is set to the sum of the previous two values in the sequence. Then the i++

increments the value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the

program clearer unless the body is very simple.

See Section 10.1 [The if Statement], page 71 for a description of the variable warn_

assign_as_truth_value.

10.4 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general

form of the for statement looks like this:

for var = expression

body

endfor

where body stands for any statement or list of statements, expression is any valid expression,

and var may take several forms. Usually it is a simple variable name or an indexed variable.

If the value of expression is a structure, var may also be a list. See Section 10.4.1 [Looping

Over Structure Elements], page 76, below.

The assignment expression in the for statement works a bit di�erently than Octave's

normal assignment statement. Instead of assigning the complete result of the expression, it

76 GNU Octave

assigns each column of the expression to var in turn. If expression is a range, a row vector,

or a scalar, the value of var will be a scalar each time the loop body is executed. If var is a

column vector or a matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the �rst ten

elements of the Fibonacci sequence, this time using the for statement:

fib = ones (1, 10);

for i = 3:10

fib (i) = fib (i-1) + fib (i-2);

endfor

This code works by �rst evaluating the expression 3:10, to produce a range of values from 3

to 10 inclusive. Then the variable i is assigned the �rst element of the range and the body

of the loop is executed once. When the end of the loop body is reached, the next value in

the range is assigned to the variable i, and the loop body is executed again. This process

continues until there are no more elements to assign.

Although it is possible to rewrite all for loops as while loops, the Octave language has

both statements because often a for loop is both less work to type and more natural to

think of. Counting the number of iterations is very common in loops and it can be easier

to think of this counting as part of looping rather than as something to do inside the loop.

10.4.1 Looping Over Structure Elements

A special form of the for statement allows you to loop over all the elements of a structure:

for [val, key] = expression

body

endfor

In this form of the for statement, the value of expression must be a structure. If it is, key

and val are set to the name of the element and the corresponding value in turn, until there

are no more elements. For example,

x.a = 1

x.b = [1, 2; 3, 4]

x.c = "string"

for [val, key] = x

key

val

endfor

a

key = a

a

val = 1

a

key = b

a

val =

a

a

1 2

a

3 4

a

a

key = c

a

val = string

Chapter 10: Statements 77

The elements are not accessed in any particular order. If you need to cycle through the

list in a particular way, you will have to use the function struct_elements and sort the

list yourself.

The key variable may also be omitted. If it is, the brackets are also optional. This is

useful for cycling through the values of all the structure elements when the names of the

elements do not need to be known.

10.5 The break Statement

The break statement jumps out of the innermost for or while loop that encloses it.

The break statement may only be used within the body of a loop. The following example

�nds the smallest divisor of a given integer, and also identi�es prime numbers:

num = 103;

div = 2;

while (div*div <= num)

if (rem (num, div) == 0)

break;

endif

div++;

endwhile

if (rem (num, div) == 0)

printf ("Smallest divisor of %d is %d\n", num, div)

else

printf ("%d is prime\n", num);

endif

When the remainder is zero in the �rst while statement, Octave immediately breaks

out of the loop. This means that Octave proceeds immediately to the statement following

the loop and continues processing. (This is very di�erent from the exit statement which

stops the entire Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition

of a while statement could just as well be replaced with a break inside an if:

num = 103;

div = 2;

while (1)

if (rem (num, div) == 0)

printf ("Smallest divisor of %d is %d\n", num, div);

break;

endif

div++;

if (div*div > num)

printf ("%d is prime\n", num);

break;

endif

endwhile

78 GNU Octave

10.6 The continue Statement

The continue statement, like break, is used only inside for or while loops. It skips

over the rest of the loop body, causing the next cycle around the loop to begin immediately.

Contrast this with break, which jumps out of the loop altogether. Here is an example:

print elements of a vector of random

integers that are even.

first, create a row vector of 10 random

integers with values between 0 and 100:

vec = round (rand (1, 10) * 100);

print what we're interested in:

for x = vec

if (rem (x, 2) != 0)

continue;

endif

printf ("%d\n", x);

endfor

If one of the elements of vec is an odd number, this example skips the print statement

for that element, and continues back to the �rst statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear

understanding of how it works. Normally, one would probably write the loop like this:

for x = vec

if (rem (x, 2) == 0)

printf ("%d\n", x);

endif

endfor

10.7 The unwind_protect Statement

Octave supports a limited form of exception handling modelled after the unwind-protect

form of Lisp.

The general form of an unwind_protect block looks like this:

unwind_protect

body

unwind_protect_cleanup

cleanup

end_unwind_protect

Where body and cleanup are both optional and may contain any Octave expressions or

commands. The statements in cleanup are guaranteed to be executed regardless of how

control exits body.

This is useful to protect temporary changes to global variables from possible errors. For

example, the following code will always restore the original value of the built-in variable

do_fortran_indexing even if an error occurs while performing the indexing operation.

Chapter 10: Statements 79

save_do_fortran_indexing = do_fortran_indexing;

unwind_protect

do_fortran_indexing = "true";

elt = a (idx)

unwind_protect_cleanup

do_fortran_indexing = save_do_fortran_indexing;

end_unwind_protect

Without unwind_protect, the value of do fortran indexing would not be restored if an

error occurs while performing the indexing operation because evaluation would stop at the

point of the error and the statement to restore the value would not be executed.

10.8 The try Statement

In addition to unwind protect, Octave supports another limited form of exception han-

dling.

The general form of a try block looks like this:

try

body

catch

cleanup

end_try_catch

Where body and cleanup are both optional and may contain any Octave expressions or

commands. The statements in cleanup are only executed if an error occurs in body.

No warnings or error messages are printed while body is executing. If an error does

occur during the execution of body, cleanup can access the text of the message that would

have been printed in the builtin constant __error_text__. This is the same as eval

(try, catch) (which may now also use __error_text__) but it is more e�cient since the

commands do not need to be parsed each time the try and catch statements are evaluated.

See Chapter 12 [Error Handling], page 95, for more information about the __error_text__

variable.

Octave's try block is a very limited variation on the Lisp condition-case form (limited

because it cannot handle di�erent classes of errors separately). Perhaps at some point

Octave can have some sort of classi�cation of errors and try-catch can be improved to be

as powerful as condition-case in Lisp.

10.9 Continuation Lines

In the Octave language, most statements end with a newline character and you must

tell Octave to ignore the newline character in order to continue a statement from one line

to the next. Lines that end with the characters ... or \ are joined with the following line

before they are divided into tokens by Octave's parser. For example, the lines

x = long_variable_name ...

+ longer_variable_name \

- 42

form a single statement. The backslash character on the second line above is interpreted a

continuation character, not as a division operator.

80 GNU Octave

For continuation lines that do not occur inside string constants, whitespace and com-

ments may appear between the continuation marker and the newline character. For example,

the statement

x = long_variable_name ... # comment one

+ longer_variable_name \ # comment two

- 42 # last comment

is equivalent to the one shown above. Inside string constants, the continuation marker must

appear at the end of the line just before the newline character.

Input that occurs inside parentheses can be continued to the next line without having

to use a continuation marker. For example, it is possible to write statements like

if (fine_dining_destination == on_a_boat

|| fine_dining_destination == on_a_train)

suess (i, will, not, eat, them, sam, i, am, i,

will, not, eat, green, eggs, and, ham);

endif

without having to add to the clutter with continuation markers.

Chapter 11: Functions and Script Files 81

11 Functions and Script Files

Complicated Octave programs can often be simpli�ed by de�ning functions. Functions

can be de�ned directly on the command line during interactive Octave sessions, or in ex-

ternal �les, and can be called just like built-in functions.

11.1 De�ning Functions

In its simplest form, the de�nition of a function named name looks like this:

function name

body

endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and under-

scores, not starting with a digit. Functions share the same pool of names as variables.

The function body consists of Octave statements. It is the most important part of the

de�nition, because it says what the function should actually do.

For example, here is a function that, when executed, will ring the bell on your terminal

(assuming that it is possible to do so):

function wakeup

printf ("\a");

endfunction

The printf statement (see Chapter 13 [Input and Output], page 97) simply tells Octave

to print the string "\a". The special character `\a' stands for the alert character (ASCII

7). See Chapter 5 [Strings], page 37.

Once this function is de�ned, you can ask Octave to evaluate it by typing the name of

the function.

Normally, you will want to pass some information to the functions you de�ne. The

syntax for passing parameters to a function in Octave is

function name (arg-list)

body

endfunction

where arg-list is a comma-separated list of the function's arguments. When the function is

called, the argument names are used to hold the argument values given in the call. The list

of arguments may be empty, in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the beep to look like

this:

function wakeup (message)

printf ("\a%s\n", message);

endfunction

Calling this function using a statement like this

wakeup ("Rise and shine!");

will cause Octave to ring your terminal's bell and print the message `Rise and shine!',

followed by a newline character (the `\n' in the �rst argument to the printf statement).

82 GNU Octave

In most cases, you will also want to get some information back from the functions you

de�ne. Here is the syntax for writing a function that returns a single value:

function ret-var = name (arg-list)

body

endfunction

The symbol ret-var is the name of the variable that will hold the value to be returned by

the function. This variable must be de�ned before the end of the function body in order

for the function to return a value.

Variables used in the body of a function are local to the function. Variables named

in arg-list and ret-var are also local to the function. See Section 7.1 [Global Variables],

page 47, for information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)

retval = sum (v) / length (v);

endfunction

If we had written avg like this instead,

function retval = avg (v)

if (is_vector (v))

retval = sum (v) / length (v);

endif

endfunction

and then called the function with a matrix instead of a vector as the argument, Octave

would have printed an error message like this:

error: `retval' undefined near line 1 column 10

error: evaluating index expression near line 7, column 1

because the body of the if statement was never executed, and retval was never de�ned.

To prevent obscure errors like this, it is a good idea to always make sure that the return

variables will always have values, and to produce meaningful error messages when problems

are encountered. For example, avg could have been written like this:

function retval = avg (v)

retval = 0;

if (is_vector (v))

retval = sum (v) / length (v);

else

error ("avg: expecting vector argument");

endif

endfunction

There is still one additional problem with this function. What if it is called without an

argument? Without additional error checking, Octave will probably print an error message

that won't really help you track down the source of the error. To allow you to catch errors

like this, Octave provides each function with an automatic variable called nargin. Each

time a function is called, nargin is automatically initialized to the number of arguments

that have actually been passed to the function. For example, we might rewrite the avg

function like this:

Chapter 11: Functions and Script Files 83

function retval = avg (v)

retval = 0;

if (nargin != 1)

usage ("avg (vector)");

endif

if (is_vector (v))

retval = sum (v) / length (v);

else

error ("avg: expecting vector argument");

endif

endfunction

Although Octave does not automatically report an error if you call a function with more

arguments than expected, doing so probably indicates that something is wrong. Octave

also does not automatically report an error if a function is called with too few arguments,

but any attempt to use a variable that has not been given a value will result in an error.

To avoid such problems and to provide useful messages, we check for both possibilities and

issue our own error message.

Automatic Variablenargin

When a function is called, this local variable is automatically initialized to the

number of arguments passed to the function. At the top level, nargin holds

the number of command line arguments that were passed to Octave.

Built-in Variablesilent functions

If the value of silent_functions is nonzero, internal output from a function is

suppressed. Otherwise, the results of expressions within a function body that

are not terminated with a semicolon will have their values printed. The default

value is 0.

For example, if the function

function f ()

2 + 2

endfunction

is executed, Octave will either print `ans = 4' or nothing depending on the value

of silent_functions.

Built-in Variablewarn missing semicolon

If the value of this variable is nonzero, Octave will warn when statements in

function de�nitions don't end in semicolons. The default value is 0.

11.2 Multiple Return Values

Unlike many other computer languages, Octave allows you to de�ne functions that return

more than one value. The syntax for de�ning functions that return multiple values is

function [ret-list] = name (arg-list)

body

endfunction

84 GNU Octave

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-

separated list of variable names that will hold the values returned from the function. The

list of return values must have at least one element. If ret-list has only one element, this

form of the function statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum element of a

vector and the index of its �rst occurrence in the vector.

function [max, idx] = vmax (v)

idx = 1;

max = v (idx);

for i = 2:length (v)

if (v (i) > max)

max = v (i);

idx = i;

endif

endfor

endfunction

In this particular case, the two values could have been returned as elements of a single

array, but that is not always possible or convenient. The values to be returned may not

have compatible dimensions, and it is often desirable to give the individual return values

distinct names.

In addition to setting nargin each time a function is called, Octave also automatically

initializes nargout to the number of values that are expected to be returned. This allows

you to write functions that behave di�erently depending on the number of values that the

user of the function has requested. The implicit assignment to the built-in variable ans

does not �gure in the count of output arguments, so the value of nargout may be zero.

The svd and lu functions are examples of built-in functions that behave di�erently

depending on the value of nargout.

It is possible to write functions that only set some return values. For example, calling

the function

function [x, y, z] = f ()

x = 1;

z = 2;

endfunction

as

[a, b, c] = f ()

produces:

a = 1

b = [](0x0)

c = 2

provided that the built-in variable define_all_return_values is nonzero and the value of

default_return_value is `[]'. See Section 7.3 [Summary of Built-in Variables], page 50.

Chapter 11: Functions and Script Files 85

Automatic Variablenargout

When a function is called, this local variable is automatically initialized to the

number of arguments expected to be returned. For example,

f ()

will result in nargout being set to 0 inside the function f and

[s, t] = f ()

will result in nargout being set to 2 inside the function f.

At the top level, nargout is unde�ned.

Built-in Variabledefault return value

The value given to otherwise uninitialized return values if define_all_return_

values is nonzero. The default value is [].

Built-in Variablede�ne all return values

If the value of define_all_return_values is nonzero, Octave will substitute

the value speci�ed by default_return_value for any return values that remain

unde�ned when a function returns. The default value is 0.

Function Filenargchk (nargin min, nargin max, n)

If n is in the range nargin min through nargin max inclusive, return the empty

matrix. Otherwise, return a message indicating whether n is too large or too

small.

This is useful for checking to see that the number of arguments supplied to a

function is within an acceptable range.

11.3 Variable-length Argument Lists

Octave has a real mechanism for handling functions that take an unspeci�ed number

of arguments, so it is not necessary to place an upper bound on the number of optional

arguments that a function can accept.

Here is an example of a function that uses the new syntax to print a header followed by

an unspeci�ed number of values:

function foo (heading, ...)

disp (heading);

va_start ();

Pre-decrement to skip `heading' arg.

while (--nargin)

disp (va_arg ());

endwhile

endfunction

The ellipsis that marks the variable argument list may only appear once and must be

the last element in the list of arguments.

Built-in Functionva start ()

Position an internal pointer to the �rst unnamed argument and allows you to

cycle through the arguments more than once. It is not necessary to call va_

start if you do not plan to cycle through the arguments more than once. This

86 GNU Octave

function may only be called inside functions that have been declared to accept

a variable number of input arguments.

Built-in Functionva arg ()

Return the value of the next available argument and move the internal pointer

to the next argument. It is an error to call va_arg() when there are no more

arguments available.

Sometimes it is useful to be able to pass all unnamed arguments to another function.

The keyword all va args makes this very easy to do. For example,

function f (...)

while (nargin--)

disp (va_arg ())

endwhile

endfunction

function g (...)

f ("begin", all_va_args, "end")

endfunction

g (1, 2, 3)

a

begin

a

1

a

2

a

3

a

end

Keywordall va args

This keyword stands for the entire list of optional argument, so it is possible

to use it more than once within the same function without having to call va_

start. It can only be used within functions that take a variable number of

arguments. It is an error to use it in other contexts.

11.4 Variable-length Return Lists

Octave also has a real mechanism for handling functions that return an unspeci�ed

number of values, so it is no longer necessary to place an upper bound on the number of

outputs that a function can produce.

Here is an example of a function that uses a variable-length return list to produce n

values:

Chapter 11: Functions and Script Files 87

function [...] = f (n, x)

for i = 1:n

vr_val (i * x);

endfor

endfunction

[dos, quatro] = f (2, 2)

)

dos = 2

)

quatro = 4

As with variable argument lists, the ellipsis that marks the variable return list may only

appear once and must be the last element in the list of returned values.

Built-in Functionvr val (val)

Each time this function is called, it places the value of its argument at the end

of the list of values to return from the current function. Once vr_val has been

called, there is no way to go back to the beginning of the list and rewrite any of

the return values. This function may only be called within functions that have

been declared to return an unspeci�ed number of output arguments (by using

the special ellipsis notation described above).

11.5 Returning From a Function

The body of a user-de�ned function can contain a return statement. This statement

returns control to the rest of the Octave program. It looks like this:

return

Unlike the return statement in C, Octave's return statement cannot be used to return

a value from a function. Instead, you must assign values to the list of return variables that

are part of the function statement. The return statement simply makes it easier to exit

a function from a deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of a vector are nonzero.

function retval = any_nonzero (v)

retval = 0;

for i = 1:length (v)

if (v (i) != 0)

retval = 1;

return;

endif

endfor

printf ("no nonzero elements found\n");

endfunction

Note that this function could not have been written using the break statement to exit

the loop once a nonzero value is found without adding extra logic to avoid printing the

message if the vector does contain a nonzero element.

88 GNU Octave

Keywordreturn

When Octave encounters the keyword return inside a function or script, it re-

turns control to be caller immediately. At the top level, the return statement is

ignored. A return statement is assumed at the end of every function de�nition.

Built-in Variablereturn last computed value

If the value of return_last_computed_value is true, and a function is de�ned

without explicitly specifying a return value, the function will return the value

of the last expression. Otherwise, no value will be returned. The default value

is 0.

For example, the function

function f ()

2 + 2;

endfunction

will either return nothing, if the value of return_last_computed_value is 0,

or 4, if the value of return_last_computed_value is nonzero.

11.6 Function Files

Except for simple one-shot programs, it is not practical to have to de�ne all the functions

you need each time you need them. Instead, you will normally want to save them in a �le

so that you can easily edit them, and save them for use at a later time.

Octave does not require you to load function de�nitions from �les before using them.

You simply need to put the function de�nitions in a place where Octave can �nd them.

When Octave encounters an identi�er that is unde�ned, it �rst looks for variables or

functions that are already compiled and currently listed in its symbol table. If it fails to

�nd a de�nition there, it searches the list of directories speci�ed by the built-in variable

LOADPATH for �les ending in `.m' that have the same base name as the unde�ned identi�er.

1

Once Octave �nds a �le with a name that matches, the contents of the �le are read. If

it de�nes a single function, it is compiled and executed. See Section 11.7 [Script Files],

page 90, for more information about how you can de�ne more than one function in a single

�le.

When Octave de�nes a function from a function �le, it saves the full name of the �le it

read and the time stamp on the �le. After that, it checks the time stamp on the �le every

time it needs the function. If the time stamp indicates that the �le has changed since the

last time it was read, Octave reads it again.

Checking the time stamp allows you to edit the de�nition of a function while Octave is

running, and automatically use the new function de�nition without having to restart your

Octave session. Checking the time stamp every time a function is used is rather ine�cient,

but it has to be done to ensure that the correct function de�nition is used.

To avoid degrading performance unnecessarily by checking the time stamps on functions

that are not likely to change, Octave assumes that function �les in the directory tree `octave-

home/share/octave/version/m' will not change, so it doesn't have to check their time

1

The `.m' su�x was chosen for compatibility with Matlab.

Chapter 11: Functions and Script Files 89

stamps every time the functions de�ned in those �les are used. This is normally a very

good assumption and provides a signi�cant improvement in performance for the function

�les that are distributed with Octave.

If you know that your own function �les will not change while you are running Octave,

you can improve performance by setting the variable ignore_function_time_stamp to

"all", so that Octave will ignore the time stamps for all function �les. Setting it to

"system" gives the default behavior. If you set it to anything else, Octave will check the

time stamps on all function �les.

Built-in VariableLOADPATH

A colon separated list of directories in which to search for function �les. See

Chapter 11 [Functions and Scripts], page 81. The value of LOADPATH over-

rides the environment variable OCTAVE_PATH. See Appendix C [Installation],

page 207.

LOADPATH is now handled in the same way as T

E

X handles TEXINPUTS. If the

path starts with `:', the standard path is prepended to the value of LOADPATH.

If it ends with `:' the standard path is appended to the value of LOADPATH.

In addition, if any path element ends in `//', that directory and all subdirec-

tories it contains are searched recursively for function �les. This can result in

a slight delay as Octave caches the lists of �les found in the LOADPATH the �rst

time Octave searches for a function. After that, searching is usually much faster

because Octave normally only needs to search its internal cache for �les.

To improve performance of recursive directory searching, it is best for each

directory that is to be searched recursively to contain either additional subdi-

rectories or function �les, but not a mixture of both.

See Section 11.9 [Organization of Functions], page 94 for a description of the

function �le directories that are distributed with Octave.

Built-in Variableignore function time stamp

This variable can be used to prevent Octave from making the system call stat

each time it looks up functions de�ned in function �les. If ignore_function_

time_stamp to "system", Octave will not automatically recompile function �les

in subdirectories of `octave-home/lib/version' if they have changed since they

were last compiled, but will recompile other function �les in the LOADPATH if they

change. If set to "all", Octave will not recompile any function �les unless their

de�nitions are removed with clear. For any other value of ignore_function_

time_stamp, Octave will always check to see if functions de�ned in function

�les need to recompiled. The default value of ignore_function_time_stamp

is "system".

Built-in Variablewarn function name clash

If the value of warn_function_name_clash is nonzero, a warning is issued when

Octave �nds that the name of a function de�ned in a function �le di�ers from

the name of the �le. (If the names disagree, the name declared inside the �le

is ignored.) If the value is 0, the warning is omitted. The default value is 1.

90 GNU Octave

11.7 Script Files

A script �le is a �le containing (almost) any sequence of Octave commands. It is read

and evaluated just as if you had typed each command at the Octave prompt, and provides

a convenient way to perform a sequence of commands that do not logically belong inside a

function.

Unlike a function �le, a script �le must not begin with the keyword function. If it does,

Octave will assume that it is a function �le, and that it de�nes a single function that should

be evaluated as soon as it is de�ned.

A script �le also di�ers from a function �le in that the variables named in a script �le

are not local variables, but are in the same scope as the other variables that are visible on

the command line.

Even though a script �le may not begin with the function keyword, it is possible to

de�ne more than one function in a single script �le and load (but not execute) all of them

at once. To do this, the �rst token in the �le (ignoring comments and other white space)

must be something other than function. If you have no other statements to evaluate, you

can use a statement that has no e�ect, like this:

Prevent Octave from thinking that this

is a function file:

1;

Define function one:

function one ()

...

To have Octave read and compile these functions into an internal form, you need to make

sure that the �le is in Octave's LOADPATH, then simply type the base name of the �le that

contains the commands. (Octave uses the same rules to search for script �les as it does to

search for function �les.)

If the �rst token in a �le (ignoring comments) is function, Octave will compile the func-

tion and try to execute it, printing a message warning about any non-whitespace characters

that appear after the function de�nition.

Note that Octave does not try to look up the de�nition of any identi�er until it needs

to evaluate it. This means that Octave will compile the following statements if they appear

in a script �le, or are typed at the command line,

not a function file:

1;

function foo ()

do_something ();

endfunction

function do_something ()

do_something_else ();

endfunction

Chapter 11: Functions and Script Files 91

even though the function do_something is not de�ned before it is referenced in the function

foo. This is not an error because Octave does not need to resolve all symbols that are

referenced by a function until the function is actually evaluated.

Since Octave doesn't look for de�nitions until they are needed, the following code will

always print `bar = 3' whether it is typed directly on the command line, read from a script

�le, or is part of a function body, even if there is a function or script �le called `bar.m' in

Octave's LOADPATH.

eval ("bar = 3");

bar

Code like this appearing within a function body could fool Octave if de�nitions were

resolved as the function was being compiled. It would be virtually impossible to make

Octave clever enough to evaluate this code in a consistent fashion. The parser would have

to be able to perform the call to eval at compile time, and that would be impossible unless

all the references in the string to be evaluated could also be resolved, and requiring that

would be too restrictive (the string might come from user input, or depend on things that

are not known until the function is evaluated).

Although Octave normally executes commands from script �les that have the name

`�le.m', you can use the function source to execute commands from any �le.

Built-in Functionsource (�le)

Parse and execute the contents of �le. This is equivalent to executing commands

from a script �le, but without requiring the �le to be named `�le.m'.

11.8 Dynamically Linked Functions

On some systems, Octave can dynamically load and execute functions written in C++.

Octave can only directly call functions written in C++, but you can also load functions

written in other languages by calling them from a simple wrapper function written in C++.

Here is an example of how to write a C++ function that Octave can load, with commen-

tary. The source for this function is included in the source distributions of Octave, in the

�le `examples/oregonator.cc'. It de�nes the same set of di�erential equations that are

used in the example problem of Section 20.1 [Ordinary Di�erential Equations], page 155.

By running that example and this one, we can compare the execution times to see what

sort of increase in speed you can expect by using dynamically linked functions.

The function de�ned in `oregonator.cc' contains just 8 statements, and is not much

di�erent than the code de�ned in the corresponding M-�le (also distributed with Octave in

the �le `examples/oregonator.m').

Here is the complete text of `oregonator.cc':

just

92 GNU Octave

#include <octave/oct.h>

DEFUN_DLD (oregonator, args, ,

"The `oregonator'.")

{

ColumnVector dx (3);

ColumnVector x = args(0).vector_value ();

dx(0) = 77.27 * (x(1) - x(0)*x(1) + x(0)

- 8.375e-06*pow (x(0), 2));

dx(1) = (x(2) - x(0)*x(1) - x(1)) / 77.27;

dx(2) = 0.161*(x(0) - x(2));

return octave_value (dx);

}

The �rst line of the �le,

#include <octave/oct.h>

includes declarations for all of Octave's internal functions that you will need. If you need

other functions from the standard C++ or C libraries, you can include the necessary headers

here.

The next two lines

DEFUN_DLD (oregonator, args, ,

"The `oregonator'.")

declares the function. The macro DEFUN_DLD and the macros that it depends on are de�ned

in the �les `defun-dld.h', `defun.h', and `defun-int.h' (these �les are included in the

header �le `octave/oct.h').

Note that the third parameter to DEFUN_DLD (nargout) is not used, so it is omitted from

the list of arguments to in order to avoid the warning from gcc about an unused function

parameter.

simply declares an object to store the right hand sides of the di�erential equation, and

The statement

ColumnVector x = args(0).vector_value ();

extracts a column vector from the input arguments. The variable args is passed to functions

de�ned with DEFUN_DLD as an octave_value_list object, which includes methods for

getting the length of the list and extracting individual elements.

In this example, we don't check for errors, but that is not di�cult. All of the Octave's

built-in functions do some form of checking on their arguments, so you can check the source

code for those functions for examples of various strategies for verifying that the correct

number and types of arguments have been supplied.

The next statements

Chapter 11: Functions and Script Files 93

ColumnVector dx (3);

dx(0) = 77.27 * (x(1) - x(0)*x(1) + x(0)

- 8.375e-06*pow (x(0), 2));

dx(1) = (x(2) - x(0)*x(1) - x(1)) / 77.27;

dx(2) = 0.161*(x(0) - x(2));

de�ne the right hand side of the di�erential equation. Finally, we can return dx:

return octave_value (dx);

The actual return type is octave_value_list, but it is only necessary to convert the return

type to an octave_value because there is a default constructor that can automatically

create an object of that type from an octave_value object, so we can just use that instead.

To use this �le, your version of Octave must support dynamic linking. To �nd out if

it does, type the command octave_config_info ("dld") at the Octave prompt. Support

for dynamic linking is included if this command returns 1.

To compile the example �le, type the command `mkoctfile oregonator.cc' at the shell

prompt. The script mkoctfile should have been installed along with Octave. Running

it will create a �le called `oregonator.oct' that can be loaded by Octave. To test the

`oregonator.oct' �le, start Octave and type the command

oregonator ([1, 2, 3], 0)

at the Octave prompt. Octave should respond by printing

ans =

77.269353

-0.012942

-0.322000

You can now use the `oregonator.oct' �le just as you would the oregonator.m �le to

solve the set of di�erential equations.

On a 133 MHz Pentium running Linux, Octave can solve the problem shown in Sec-

tion 20.1 [Ordinary Di�erential Equations], page 155 in about 1.4 second using the dynam-

ically linked function, compared to about 19 seconds using the M-�le. Similar decreases in

execution time can be expected for other functions, particularly those that rely on functions

like lsode that require user-supplied functions.

Additional examples are available in the �les in the `src' directory of the Octave distri-

bution. Currently, this includes the �les

balance.cc fft2.cc inv.cc qzval.cc

chol.cc filter.cc log.cc schur.cc

colloc.cc find.cc lsode.cc sort.cc

dassl.cc fsolve.cc lu.cc svd.cc

det.cc givens.cc minmax.cc syl.cc

eig.cc hess.cc pinv.cc

expm.cc ifft.cc qr.cc

fft.cc ifft2.cc quad.cc

94 GNU Octave

These �les use the macro DEFUN_DLD_BUILTIN instead of DEFUN_DLD. The di�erence between

these two macros is just that DEFUN_DLD_BUILTIN can de�ne a built-in function that is not

dynamically loaded if the operating system does not support dynamic linking. To de�ne

your own dynamically linked functions you should use DEFUN_DLD.

There is currently no detailed description of all the functions that you can call in a

built-in function. For the time being, you will have to read the source code for Octave.

11.9 Organization of Functions Distributed with Octave

Many of Octave's standard functions are distributed as function �les. They are loosely

organized by topic, in subdirectories of `octave-home/lib/octave/version/m', to make it

easier to �nd them.

The following is a list of all the function �le subdirectories, and the types of functions

you will �nd there.

`audio' Functions for playing and recording sounds.

`control' Functions for design and simulation of automatic control systems.

`elfun' Elementary functions.

`general' Miscellaneous matrix manipulations, like flipud, rot90, and triu, as well as

other basic functions, like is_matrix, nargchk, etc.

`image' Image processing tools. These functions require the X Window System.

`io' Input-ouput functions.

`linear-algebra'

Functions for linear algebra.

`miscellaneous'

Functions that don't really belong anywhere else.

`plot' A set of functions that implement the Matlab-like plotting functions.

`polynomial'

Functions for manipulating polynomials.

`set' Functions for creating and manipulating sets of unique values.

`signal' Functions for signal processing applications.

`specfun' Special functions.

`special-matrix'

Functions that create special matrix forms.

`startup' Octave's system-wide startup �le.

`statistics'

Statistical functions.

`strings' Miscellaneous string-handling functions.

`time' Functions related to time keeping.

Chapter 12: Error Handling 95

12 Error Handling

Octave includes several functions for printing error and warning messages. When you

write functions that need to take special action when they encounter abnormal conditions,

you should print the error messages using the functions described in this chapter.

Built-in Functionerror (template, : : :)

The error function formats the optional arguments under the control of the

template string template using the same rules as the printf family of functions

(see Section 13.2.4 [Formatted Output], page 105). The resulting message is

pre�xed by the string `error: ' and printed on the stderr stream.

Calling error also sets Octave's internal error state such that control will return

to the top level without evaluating any more commands. This is useful for

aborting from functions or scripts.

If the error message does not end with a new line character, Octave will print a

traceback of all the function calls leading to the error. For example, given the

following function de�nitions:

function f () g () end

function g () h () end

function h () nargin == 1 || error ("nargin != 1"); end

calling the function f will result in a list of messages that can help you to

quickly locate the exact location of the error:

f ()

error: nargin != 1

error: evaluating index expression near line 1, column 30

error: evaluating binary operator `||' near line 1, column 27

error: called from `h'

error: called from `g'

error: called from `f'

If the error message ends in a new line character, Octave will print the message

but will not display any traceback messages as it returns control to the top

level. For example, modifying the error message in the previous example to end

in a new line causes Octave to only print a single message:

function h () nargin == 1 || error ("nargin != 1\n"); end

f ()

error: nargin != 1

Built-in Variableerror text

This variable contains the the text of error messages that would have been

printed in the body of the most recent unwind_protect or try statement or

the try part of the most recent call to the eval function. Outside of the unwind_

protect and try statements or the eval function, or if no error has occurred

within them, the value of error_text is guaranteed to be the empty string.

Note that the message does not include the �rst `error: ' pre�x, so that it may

easily be passed to the error function without additional processing

1

.

1

Yes, it's a kluge, but it seems to be a reasonably useful one.

96 GNU Octave

See Section 10.8 [The try Statement], page 79 and Section 10.7 [The un-

wind protect Statement], page 78.

Built-in Variablebeep on error

If the value of beep_on_error is nonzero, Octave will try to ring your terminal's

bell before printing an error message. The default value is 0.

Built-in Functionwarning (msg)

Print a warning message msg pre�xed by the string `warning: '. After printing

the warning message, Octave will continue to execute commands. You should

use this function should when you want to notify the user of an unusual condi-

tion, but only when it makes sense for your program to go on.

Built-in Functionusage (msg)

Print the message msg, pre�xed by the string `usage: ', and set Octave's inter-

nal error state such that control will return to the top level without evaluating

any more commands. This is useful for aborting from functions.

After usage is evaluated, Octave will print a traceback of all the function calls

leading to the usage message.

You should use this function for reporting problems errors that result from

an improper call to a function, such as calling a function with an incorrect

number of arguments, or with arguments of the wrong type. For example, most

functions distributed with Octave begin with code like this

if (nargin != 2)

usage ("foo (a, b)");

endif

to check for the proper number of arguments.

The following pair of functions are of limited usefulness, and may be removed from future

versions of Octave.

Function Fileperror (name, num)

Print the error message for function name corresponding to the error number

num. This function is intended to be used to print useful error messages for

those functions that return numeric error codes.

Function Filestrerror (name, num)

Return the text of an error message for function name corresponding to the

error number num. This function is intended to be used to print useful error

messages for those functions that return numeric error codes.

Chapter 13: Input and Output 97

13 Input and Output

There are two distinct classes of input and output functions. The �rst set are modeled

after the functions available in Matlab. The second set are modeled after the standard

I/O library used by the C programming language and o�er more exibility and control over

the output.

When running interactively, Octave normally sends any output intended for your ter-

minal that is more than one screen long to a paging program, such as less or more. This

avoids the problem of having a large volume of output stream by before you can read it.

With less (and some versions of more) you can also scan forward and backward, and search

for speci�c items.

Normally, no output is displayed by the pager until just before Octave is ready to print

the top level prompt, or read from the standard input (for example, by using the fscanf or

scanf functions). This means that there may be some delay before any output appears on

your screen if you have asked Octave to perform a signi�cant amount of work with a single

command statement. The function fflush may be used to force output to be sent to the

pager (or any other stream) immediately.

You can select the program to run as the pager by setting the variable PAGER, and you

can turn paging o� by setting the value of the variable page_screen_output to 0.

Commandmore

Commandmore on

Commandmore o�

Turn output pagination on or o�. Without an argument, more toggles the

current state.

Built-in VariablePAGER

The default value is normally "less", "more", or "pg", depending on what

programs are installed on your system. See Appendix C [Installation], page 207.

When running interactively, Octave sends any output intended for your terminal

that is more than one screen long to the program named by the value of the

variable PAGER.

Built-in Variablepage screen output

If the value of page_screen_output is nonzero, all output intended for the

screen that is longer than one page is sent through a pager. This allows you

to view one screenful at a time. Some pagers (such as less|see Appendix C

[Installation], page 207) are also capable of moving backward on the output.

The default value is 1.

Built-in Variablepage output immediately

If the value of page_output_immediately is nonzero, Octave sends output to

the pager as soon as it is available. Otherwise, Octave bu�ers its output and

waits until just before the prompt is printed to ush it to the pager. The default

value is 0.

98 GNU Octave

Built-in Function�ush (�d)

Flush output to �d. This is useful for ensuring that all pending

output makes it to the screen before some other event occurs. For

example, it is always a good idea to ush the standard output

stream before calling input.

13.1 Basic Input and Output

13.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it has been evaluated,

the simplest of all I/O functions is a simple expression. For example, the following expression

will display the value of pi

pi

a

pi = 3.1416

This works well as long as it is acceptable to have the name of the variable (or `ans')

printed along with the value. To print the value of a variable without printing its name,

use the function disp.

The format command o�ers some control over the way Octave prints values with disp

and through the normal echoing mechanism.

Built-in Variableans

This variable holds the most recently computed result that was not explicitly

assigned to a variable. For example, after the expression

3^2 + 4^2

is evaluated, the value of ans is 25.

Built-in Functiondisp (x)

Display the value of x. For example,

disp ("The value of pi is:"), disp (pi)

a

the value of pi is:

a

3.1416

Note that the output from disp always ends with a newline.

Commandformat options

Control the format of the output produced by disp and Octave's normal echoing

mechanism. Valid options are listed in the following table.

short This is the default format. Octave will try to print numbers with

at least 5 signi�cant �gures within a �eld that is a maximum of 10

characters wide.

If Octave is unable to format a matrix so that columns line up on

the decimal point and all the numbers �t within the maximum �eld

width, it switches to an `e' format.

Chapter 13: Input and Output 99

long Octave will try to print numbers with at least 15 signi�cant �gures

within a �eld that is a maximum of 24 characters wide.

As will the `short' format, Octave will switch to an `e' format if it

is unable to format a matrix so that columns line up on the decimal

point and all the numbers �t within the maximum �eld width.

long e

short e The same as `format long' or `format short' but always display

output with an `e' format. For example, with the `short e' format,

pi is displayed as 3.14e+00.

long E

short E The same as `format long e' or `format short e' but always dis-

play output with an uppercase `E' format. For example, with the

`long E' format, pi is displayed as 3.14159265358979E+00.

free

none Print output in free format, without trying to line up columns of

matrices on the decimal point. This also causes complex numbers

to be formatted like this `(0.604194, 0.607088)' instead of like

this `0.60419 + 0.60709i'.

bank Print in a �xed format with two places to the right of the decimal

point.

+ Print a `+' symbol for nonzero matrix elements and a space for zero

matrix elements. This format can be very useful for examining the

structure of a large matrix.

hex Print the hexadecimal representation numbers as they are stored

in memory. For example, on a workstation which stores 8 byte

real values in IEEE format with the least signi�cant byte �rst, the

value of pi when printed in hex format is 400921fb54442d18. This

format only works for numeric values.

bit Print the bit representation of numbers as stored in memory. For

example, the value of pi is

01000000000010010010000111111011

01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting purposes) when

printed in bit format on a workstation which stores 8 byte real

values in IEEE format with the least signi�cant byte �rst. This

format only works for numeric types.

Built-in Variableprint answer id name

If the value of print_answer_id_name is nonzero, variable names are printed

along with the result. Otherwise, only the result values are printed. The default

value is 1.

100 GNU Octave

13.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for input. The input and

menu functions are normally used for managing an interactive dialog with a user, and the

keyboard function is normally used for doing simple debugging.

Built-in Functioninput (prompt)

Built-in Functioninput (prompt, "s")

Print a prompt and wait for user input. For example,

input ("Pick a number, any number! ")

prints the prompt

Pick a number, any number!

and waits for the user to enter a value. The string entered by the user is

evaluated as an expression, so it may be a literal constant, a variable name, or

any other valid expression.

Currently, input only returns one value, regardless of the number of values

produced by the evaluation of the expression.

If you are only interested in getting a literal string value, you can call input

with the character string "s" as the second argument. This tells Octave to

return the string entered by the user directly, without evaluating it �rst.

Because there may be output waiting to be displayed by the pager, it is a good

idea to always call fflush (stdout) before calling input. This will ensure that

all pending output is written to the screen before your prompt. See Chapter 13

[Input and Output], page 97.

Function Filemenu (title, opt1, : : :)

Print a title string followed by a series of options. Each option will be printed

along with a number. The return value is the number of the option selected

by the user. This function is useful for interactive programs. There is no limit

to the number of options that may be passed in, but it may be confusing to

present more than will �t easily on one screen.

Built-in Functionkeyboard (prompt)

This function is normally used for simple debugging. When the keyboard

function is executed, Octave prints a prompt and waits for user input. The

input strings are then evaluated and the results are printed. This makes it

possible to examine the values of variables within a function, and to assign new

values to variables. No value is returned from the keyboard function, and it

continues to prompt for input until the user types `quit', or `exit'.

If keyboard is invoked without any arguments, a default prompt of `debug> '

is used.

For both input and keyboard, the normal command line history and editing functions

are available at the prompt.

Octave also has a function that makes it possible to get a single character from the

keyboard without requiring the user to type a carriage return.

Chapter 13: Input and Output 101

Built-in Functionkbhit ()

Read a single keystroke from the keyboard. For example,

x = kbhit ();

will set x to the next character typed at the keyboard as soon as it is typed.

13.1.3 Simple File I/O

The save and load commands allow data to be written to and read from disk �les in

various formats. The default format of �les written by the save command can be controlled

using the built-in variables default_save_format and save_precision.

Note that Octave can not yet save or load structure variables or any user-de�ned types.

Commandsave options �le v1 v2 : : :

Save the named variables v1, v2, : : : in the �le �le. The special �lename `-'

can be used to write the output to your terminal. If no variable names are

listed, Octave saves all the variables in the current scope. Valid options for

the save command are listed in the following table. Options that modify the

output format override the format speci�ed by the built-in variable default_

save_format.

-ascii Save the data in Octave's text data format.

-binary Save the data in Octave's binary data format.

-float-binary

Save the data in Octave's binary data format but only using single

precision. You should use this format only if you know that all the

values to be saved can be represented in single precision.

-mat-binary

Save the data in Matlab's binary data format.

-save-builtins

Force Octave to save the values of built-in variables too. By default,

Octave does not save built-in variables.

The list of variables to save may include wildcard patterns containing the fol-

lowing special characters:

? Match any single character.

* Match zero or more characters.

[list] Match the list of characters speci�ed by list. If the �rst character

is ! or ^, match all characters except those speci�ed by list. For

example, the pattern `[a-zA-Z]' will match all lower and upper

case alphabetic characters.

Except when using theMatlab binary data �le format, saving global variables

also saves the global status of the variable, so that if it is restored at a later

time using `load', it will be restored as a global variable.

The command

102 GNU Octave

save -binary data a b*

saves the variable `a' and all variables beginning with `b' to the �le `data' in

Octave's binary format.

There are two variables that modify the behavior of save.

Built-in Variabledefault save format

This variable speci�es the default format for the save command. It should

have one of the following values: "ascii", "binary", float-binary, or "mat-

binary". The initial default save format is Octave's text format.

Built-in Variablesave precision

This variable speci�es the number of digits to keep when saving data in text

format. The default value is 17.

Commandload options �le v1 v2 : : :

Load the named variables from the �le �le. As with save, you may specify a list

of variables and load will only extract those variables with names that match.

For example, to restore the variables saved in the �le `data', use the command

load data

Octave will refuse to overwrite existing variables unless you use the option

`-force'.

If a variable that is not marked as global is loaded from a �le when a global

symbol with the same name already exists, it is loaded in the global symbol

table. Also, if a variable is marked as global in a �le and a local symbol exists,

the local symbol is moved to the global symbol table and given the value from

the �le. Since it seems that both of these cases are likely to be the result of

some sort of error, they will generate warnings.

The load command can read data stored in Octave's text and binary formats,

and Matlab's binary format. It will automatically detect the type of �le and

do conversion from di�erent oating point formats (currently only IEEE big

and little endian, though other formats may added in the future).

Valid options for load are listed in the following table.

-force Force variables currently in memory to be overwritten by variables

with the same name found in the �le.

-ascii Force Octave to assume the �le is in Octave's text format.

-binary Force Octave to assume the �le is in Octave's binary format.

-mat-binary

Force Octave to assume the �le is in Matlab's binary format.

Chapter 13: Input and Output 103

13.2 C-Style I/O Functions

Octave's C-style input and output functions provide most of the functionality of the C

programming language's standard I/O library. The argument lists for some of the input

functions are slightly di�erent, however, because Octave has no way of passing arguments

by reference.

In the following, �le refers to a �le name and fid refers to an integer �le number, as

returned by fopen.

There are three �les that are always available. Although these �les can be accessed using

their corresponding numeric �le ids, you should always use the symbolic names given in the

table below, since it will make your programs easier to understand.

Built-in Variablestdin

The standard input stream (�le id 0). When Octave is used interactively, this

is �ltered through the command line editing functions.

Built-in Variablestdout

The standard output stream (�le id 1). Data written to the standard output is

normally �ltered through the pager.

Built-in Variablestderr

The standard error stream (�le id 2). Even if paging is turned on, the standard

error is not sent to the pager. It is useful for error messages and prompts.

13.2.1 Opening and Closing Files

Built-in Function[�d, msg] = fopen (name, mode, arch)

Built-in Function�d list = fopen ("all")

Built-in Function�le = fopen (�d)

The �rst form of the fopen function opens the named �le with the speci�ed

mode (read-write, read-only, etc.) and architecture interpretation (IEEE big

endian, IEEE little endian, etc.), and returns an integer value that may be used

to refer to the �le later. If an error occurs, �d is set to �1 and msg contains the

corresponding system error message. The mode is a one or two character string

that speci�es whether the �le is to be opened for reading, writing, or both.

The second form of the fopen function returns a vector of �le ids corresponding

to all the currently open �les, excluding the stdin, stdout, and stderr streams.

The third form of the fopen function returns the name of a currently open �le

given its �le id.

For example,

myfile = fopen ("splat.dat", "r", "ieee-le");

opens the �le `splat.dat' for reading. If necessary, binary numeric values will

be read assuming they are stored in IEEE format with the least signi�cant bit

�rst, and then converted to the native representation.

104 GNU Octave

Opening a �le that is already open simply opens it again and returns a separate

�le id. It is not an error to open a �le several times, though writing to the same

�le through several di�erent �le ids may produce unexpected results.

The possible values `mode' may have are

`r' Open a �le for reading.

`w' Open a �le for writing. The previous contents are discared.

`a' Open or create a �le for writing at the end of the �le.

`r+' Open an existing �le for reading and writing.

`w+' Open a �le for reading or writing. The previous contents are dis-

carded.

`a+' Open or create a �le for reading or writing at the end of the �le.

The parameter arch is a string specifying the default data format for the �le.

Valid values for arch are:

`native' The format of the current machine (this is the default).

`ieee-le' IEEE big endian format.

`ieee-be' IEEE little endian format.

`vaxd' VAX D oating format.

`vaxg' VAX G oating format.

`cray' Cray oating format.

however, conversions are currently only supported for `native' `ieee-be', and

`ieee-le' formats.

Built-in Functionfclose (�d)

Closes the speci�ed �le. If an error is encountered while trying to close the �le,

an error message is printed and fclose returns 0. Otherwise, it returns 1.

13.2.2 Simple Output

Built-in Functionfputs (�d, string)

Write a string to a �le with no formatting.

Built-in Functionputs (string)

Write a string to the standard output with no formatting.

13.2.3 Line-Oriented Input

Built-in Functionfgetl (�d, len)

Read characters from a �le, stopping at the �rst newline character that is

encountered or after len characters have been read, and returning the characters

as a string. The newline is not included in the returned value.

If len is omitted, fgetl reads until the next newline character.

If there are no more characters to read, fgetl returns �1.

Chapter 13: Input and Output 105

Built-in Functionfgets (�d, len)

Read characters from a �le, stopping at the �rst newline character that is

encountered or after len characters have been read, and returning the characters

as a string. The newline is included in the returned value.

If len is omitted, fgets reads until the next newline character.

If there are no more characters to read, fgets returns �1.

13.2.4 Formatted Output

This section describes how to call printf and related functions.

The following functions are available for formatted output. They are modelled after the

C language functions of the same name, but they interpret the format template di�erently

in order to improve the performance of printing vector and matrix values.

Function Fileprintf (template, : : :)

The printf function prints the optional arguments under the control of the

template string template to the stream stdout.

Built-in Functionfprintf (�d, template, : : :)

This function is just like printf, except that the output is written to the stream

�d instead of stdout.

Built-in Functionsprintf (template, : : :)

This is like printf, except that the output is returned as a string. Unlike the

C library function, which requires you to provide a suitably sized string as an

argument, Octave's sprintf function returns the string, automatically sized to

hold all of the items converted.

The printf function can be used to print any number of arguments. The template

string argument you supply in a call provides information not only about the number of

additional arguments, but also about their types and what style should be used for printing

them.

Ordinary characters in the template string are simply written to the output stream

as-is, while conversion speci�cations introduced by a `%' character in the template cause

subsequent arguments to be formatted and written to the output stream. For example,

pct = 37;

filename = "foo.txt";

printf ("Processing of `%s' is %d%% finished.\nPlease be patient.\n",

filename, pct);

produces output like

Processing of `foo.txt' is 37% finished.

Please be patient.

This example shows the use of the `%d' conversion to specify that a scalar argument

should be printed in decimal notation, the `%s' conversion to specify printing of a string

argument, and the `%%' conversion to print a literal `%' character.

106 GNU Octave

There are also conversions for printing an integer argument as an unsigned value in

octal, decimal, or hexadecimal radix (`%o', `%u', or `%x', respectively); or as a character

value (`%c').

Floating-point numbers can be printed in normal, �xed-point notation using the `%f'

conversion or in exponential notation using the `%e' conversion. The `%g' conversion uses

either `%e' or `%f' format, depending on what is more appropriate for the magnitude of the

particular number.

You can control formatting more precisely by writing modi�ers between the `%' and

the character that indicates which conversion to apply. These slightly alter the ordinary

behavior of the conversion. For example, most conversion speci�cations permit you to

specify a minimum �eld width and a ag indicating whether you want the result left- or

right-justi�ed within the �eld.

The speci�c ags and modi�ers that are permitted and their interpretation vary de-

pending on the particular conversion. They're all described in more detail in the following

sections.

13.2.5 Output Conversion for Matrices

When given a matrix value, Octave's formatted output functions cycle through the

format template until all the values in the matrix have been printed. For example,

printf ("%4.2f %10.2e %8.4g\n", hilb (3));

a

1.00 5.00e-01 0.3333

a

0.50 3.33e-01 0.25

a

0.33 2.50e-01 0.2

If more than one value is to be printed in a single call, the output functions do not

return to the beginning of the format template when moving on from one value to the next.

This can lead to confusing output if the number of elements in the matrices are not exact

multiples of the number of conversions in the format template. For example,

printf ("%4.2f %10.2e %8.4g\n", [1, 2], [3, 4]);

a

1.00 2.00e+00 3

a

4.00

If this is not what you want, use a series of calls instead of just one.

13.2.6 Output Conversion Syntax

This section provides details about the precise syntax of conversion speci�cations that

can appear in a printf template string.

Characters in the template string that are not part of a conversion speci�cation are

printed as-is to the output stream.

The conversion speci�cations in a printf template string have the general form:

% ags width [. precision] type conversion

For example, in the conversion speci�er `%-10.8ld', the `-' is a ag, `10' speci�es the �eld

width, the precision is `8', the letter `l' is a type modi�er, and `d' speci�es the conversion

Chapter 13: Input and Output 107

style. (This particular type speci�er says to print a numeric argument in decimal notation,

with a minimum of 8 digits left-justi�ed in a �eld at least 10 characters wide.)

In more detail, output conversion speci�cations consist of an initial `%' character followed

in sequence by:

� Zero or more ag characters that modify the normal behavior of the conversion speci-

�cation.

� An optional decimal integer specifying the minimum �eld width. If the normal conver-

sion produces fewer characters than this, the �eld is padded with spaces to the speci�ed

width. This is a minimum value; if the normal conversion produces more characters

than this, the �eld is not truncated. Normally, the output is right-justi�ed within the

�eld.

You can also specify a �eld width of `*'. This means that the next argument in the

argument list (before the actual value to be printed) is used as the �eld width. The

value is rounded to the nearest integer. If the value is negative, this means to set the

`-' ag (see below) and to use the absolute value as the �eld width.

� An optional precision to specify the number of digits to be written for the numeric

conversions. If the precision is speci�ed, it consists of a period (`.') followed optionally

by a decimal integer (which defaults to zero if omitted).

You can also specify a precision of `*'. This means that the next argument in the

argument list (before the actual value to be printed) is used as the precision. The value

must be an integer, and is ignored if it is negative.

� An optional type modi�er character. This character is ignored by Octave's printf

function, but is recognized to provide compatibility with the C language printf.

� A character that speci�es the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the

di�erent conversion speci�ers. See the descriptions of the individual conversions for infor-

mation about the particular options that they use.

13.2.7 Table of Output Conversions

Here is a table summarizing what all the di�erent conversions do:

`%d', `%i' Print an integer as a signed decimal number. See Section 13.2.8 [Integer Con-

versions], page 108, for details. `%d' and `%i' are synonymous for output, but are

di�erent when used with scanf for input (see Section 13.2.13 [Table of Input

Conversions], page 112).

`%o' Print an integer as an unsigned octal number. See Section 13.2.8 [Integer Con-

versions], page 108, for details.

`%u' Print an integer as an unsigned decimal number. See Section 13.2.8 [Integer

Conversions], page 108, for details.

`%x', `%X' Print an integer as an unsigned hexadecimal number. `%x' uses lower-case letters

and `%X' uses upper-case. See Section 13.2.8 [Integer Conversions], page 108,

for details.

108 GNU Octave

`%f' Print a oating-point number in normal (�xed-point) notation. See Sec-

tion 13.2.9 [Floating-Point Conversions], page 109, for details.

`%e', `%E' Print a oating-point number in exponential notation. `%e' uses lower-case let-

ters and `%E' uses upper-case. See Section 13.2.9 [Floating-Point Conversions],

page 109, for details.

`%g', `%G' Print a oating-point number in either normal (�xed-point) or exponential no-

tation, whichever is more appropriate for its magnitude. `%g' uses lower-case

letters and `%G' uses upper-case. See Section 13.2.9 [Floating-Point Conver-

sions], page 109, for details.

`%c' Print a single character. See Section 13.2.10 [Other Output Conversions],

page 109.

`%s' Print a string. See Section 13.2.10 [Other Output Conversions], page 109.

`%%' Print a literal `%' character. See Section 13.2.10 [Other Output Conversions],

page 109.

If the syntax of a conversion speci�cation is invalid, unpredictable things will happen,

so don't do this. If there aren't enough function arguments provided to supply values for

all the conversion speci�cations in the template string, or if the arguments are not of the

correct types, the results are unpredictable. If you supply more arguments than conversion

speci�cations, the extra argument values are simply ignored; this is sometimes useful.

13.2.8 Integer Conversions

This section describes the options for the `%d', `%i', `%o', `%u', `%x', and `%X' conversion

speci�cations. These conversions print integers in various formats.

The `%d' and `%i' conversion speci�cations both print an numeric argument as a signed

decimal number; while `%o', `%u', and `%x' print the argument as an unsigned octal, decimal,

or hexadecimal number (respectively). The `%X' conversion speci�cation is just like `%x'

except that it uses the characters `ABCDEF' as digits instead of `abcdef'.

The following ags are meaningful:

`-' Left-justify the result in the �eld (instead of the normal right-justi�cation).

`+' For the signed `%d' and `%i' conversions, print a plus sign if the value is positive.

` ' For the signed `%d' and `%i' conversions, if the result doesn't start with a plus

or minus sign, pre�x it with a space character instead. Since the `+' ag ensures

that the result includes a sign, this ag is ignored if you supply both of them.

`#' For the `%o' conversion, this forces the leading digit to be `0', as if by increasing

the precision. For `%x' or `%X', this pre�xes a leading `0x' or `0X' (respectively) to

the result. This doesn't do anything useful for the `%d', `%i', or `%u' conversions.

`0' Pad the �eld with zeros instead of spaces. The zeros are placed after any

indication of sign or base. This ag is ignored if the `-' ag is also speci�ed, or

if a precision is speci�ed.

Chapter 13: Input and Output 109

If a precision is supplied, it speci�es the minimum number of digits to appear; leading

zeros are produced if necessary. If you don't specify a precision, the number is printed with

as many digits as it needs. If you convert a value of zero with an explicit precision of zero,

then no characters at all are produced.

13.2.9 Floating-Point Conversions

This section discusses the conversion speci�cations for oating-point numbers: the `%f',

`%e', `%E', `%g', and `%G' conversions.

The `%f' conversion prints its argument in �xed-point notation, producing output of the

form [-]ddd.ddd, where the number of digits following the decimal point is controlled by

the precision you specify.

The `%e' conversion prints its argument in exponential notation, producing output of

the form [-]d.ddde[+|-]dd. Again, the number of digits following the decimal point is

controlled by the precision. The exponent always contains at least two digits. The `%E'

conversion is similar but the exponent is marked with the letter `E' instead of `e'.

The `%g' and `%G' conversions print the argument in the style of `%e' or `%E' (respectively)

if the exponent would be less than -4 or greater than or equal to the precision; otherwise

they use the `%f' style. Trailing zeros are removed from the fractional portion of the result

and a decimal-point character appears only if it is followed by a digit.

The following ags can be used to modify the behavior:

`-' Left-justify the result in the �eld. Normally the result is right-justi�ed.

`+' Always include a plus or minus sign in the result.

` ' If the result doesn't start with a plus or minus sign, pre�x it with a space

instead. Since the `+' ag ensures that the result includes a sign, this ag is

ignored if you supply both of them.

`#' Speci�es that the result should always include a decimal point, even if no digits

follow it. For the `%g' and `%G' conversions, this also forces trailing zeros after

the decimal point to be left in place where they would otherwise be removed.

`0' Pad the �eld with zeros instead of spaces; the zeros are placed after any sign.

This ag is ignored if the `-' ag is also speci�ed.

The precision speci�es how many digits follow the decimal-point character for the `%f',

`%e', and `%E' conversions. For these conversions, the default precision is 6. If the precision

is explicitly 0, this suppresses the decimal point character entirely. For the `%g' and `%G'

conversions, the precision speci�es how many signi�cant digits to print. Signi�cant digits

are the �rst digit before the decimal point, and all the digits after it. If the precision is 0

or not speci�ed for `%g' or `%G', it is treated like a value of 1. If the value being printed

cannot be expressed precisely in the speci�ed number of digits, the value is rounded to the

nearest number that �ts.

13.2.10 Other Output Conversions

This section describes miscellaneous conversions for printf.

110 GNU Octave

The `%c' conversion prints a single character. The `-' ag can be used to specify left-

justi�cation in the �eld, but no other ags are de�ned, and no precision or type modi�er

can be given. For example:

printf ("%c%c%c%c%c", "h", "e", "l", "l", "o");

prints `hello'.

The `%s' conversion prints a string. The corresponding argument must be a string. A

precision can be speci�ed to indicate the maximum number of characters to write; otherwise

characters in the string up to but not including the terminating null character are written

to the output stream. The `-' ag can be used to specify left-justi�cation in the �eld, but

no other ags or type modi�ers are de�ned for this conversion. For example:

printf ("%3s%-6s", "no", "where");

prints ` nowhere ' (note the leading and trailing spaces).

13.2.11 Formatted Input

Octave provides the scanf, fscanf, and sscanf functions to read formatted input.

There are two forms of each of these functions. One can be used to extract vectors of data

from a �le, and the other is more `C-like'.

Built-in Function[val, count] = fscanf (�d, template, size)

Built-in Function[v1, v2, : : :] = fscanf (�d, template, "C")

In the �rst form, read from �d according to template, returning the result in

the matrix val.

The optional argument size speci�es the amount of data to read and may be

one of

Inf Read as much as possible, returning a column vector.

nr

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the

number of elements read is not an exact multiple of nr, the last

column is padded with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If

the number of elements read is not an exact multiple of nr, the last

column is padded with zeros.

If size is omitted, a value of Inf is assumed.

A string is returned if template speci�es only character conversions.

The number of items successfully read is returned in count.

In the second form, read from �d according to template, with each conversion

speci�er in template corresponding to a single scalar return value. This form

is more `C-like', and also compatible with previous versions of Octave.

Built-in Function[val, count] = sscanf (string, template, size)

Built-in Function[v1, v2, : : :] = sscanf (string, template, "C")

This is like fscanf, except that the characters are taken from the string string

instead of from a stream. Reaching the end of the string is treated as an end-

of-�le condition.

Chapter 13: Input and Output 111

Built-in Function[val, count] = scanf (template, size)

Built-in Function[v1, v2, : : :] = scanf (template, "C")

This is equivalent to calling fscanf with �d = stdin.

It is currently not useful to call scanf in interactive programs.

Calls to scanf are super�cially similar to calls to printf in that arbitrary arguments are

read under the control of a template string. While the syntax of the conversion speci�cations

in the template is very similar to that for printf, the interpretation of the template is

oriented more towards free-format input and simple pattern matching, rather than �xed-

�eld formatting. For example, most scanf conversions skip over any amount of \white

space" (including spaces, tabs, and newlines) in the input �le, and there is no concept

of precision for the numeric input conversions as there is for the corresponding output

conversions. Ordinarily, non-whitespace characters in the template are expected to match

characters in the input stream exactly.

When a matching failure occurs, scanf returns immediately, leaving the �rst non-

matching character as the next character to be read from the stream, and scanf returns all

the items that were successfully converted.

The formatted input functions are not used as frequently as the formatted output func-

tions. Partly, this is because it takes some care to use them properly. Another reason is

that it is di�cult to recover from a matching error.

13.2.12 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters inter-

spersed with conversion speci�cations that start with `%'.

Any whitespace character in the template causes any number of whitespace characters

in the input stream to be read and discarded. The whitespace characters that are matched

need not be exactly the same whitespace characters that appear in the template string. For

example, write ` , ' in the template to recognize a comma with optional whitespace before

and after.

Other characters in the template string that are not part of conversion speci�cations

must match characters in the input stream exactly; if this is not the case, a matching

failure occurs.

The conversion speci�cations in a scanf template string have the general form:

% ags width type conversion

In more detail, an input conversion speci�cation consists of an initial `%' character fol-

lowed in sequence by:

� An optional ag character `*', which says to ignore the text read for this speci�cation.

When scanf �nds a conversion speci�cation that uses this ag, it reads input as directed

by the rest of the conversion speci�cation, but it discards this input, does not use a

pointer argument, and does not increment the count of successful assignments.

� An optional decimal integer that speci�es the maximum �eld width. Reading of char-

acters from the input stream stops either when this maximum is reached or when a

non-matching character is found, whichever happens �rst. Most conversions discard

112 GNU Octave

initial whitespace characters (those that don't are explicitly documented), and these

discarded characters don't count towards the maximum �eld width.

� An optional type modi�er character. This character is ignored by Octave's scanf

function, but is recognized to provide compatibility with the C language scanf.

� A character that speci�es the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the

di�erent conversion speci�ers. See the descriptions of the individual conversions for infor-

mation about the particular options that they allow.

13.2.13 Table of Input Conversions

Here is a table that summarizes the various conversion speci�cations:

`%d' Matches an optionally signed integer written in decimal. See Section 13.2.14

[Numeric Input Conversions], page 113.

`%i' Matches an optionally signed integer in any of the formats that the C language

de�nes for specifying an integer constant. See Section 13.2.14 [Numeric Input

Conversions], page 113.

`%o' Matches an unsigned integer written in octal radix. See Section 13.2.14 [Nu-

meric Input Conversions], page 113.

`%u' Matches an unsigned integer written in decimal radix. See Section 13.2.14

[Numeric Input Conversions], page 113.

`%x', `%X' Matches an unsigned integer written in hexadecimal radix. See Section 13.2.14

[Numeric Input Conversions], page 113.

`%e', `%f', `%g', `%E', `%G'

Matches an optionally signed oating-point number. See Section 13.2.14 [Nu-

meric Input Conversions], page 113.

`%s' Matches a string containing only non-whitespace characters. See Section 13.2.15

[String Input Conversions], page 113.

`%c' Matches a string of one or more characters; the number of characters read

is controlled by the maximum �eld width given for the conversion. See Sec-

tion 13.2.15 [String Input Conversions], page 113.

`%%' This matches a literal `%' character in the input stream. No corresponding

argument is used.

If the syntax of a conversion speci�cation is invalid, the behavior is unde�ned. If there

aren't enough function arguments provided to supply addresses for all the conversion spec-

i�cations in the template strings that perform assignments, or if the arguments are not of

the correct types, the behavior is also unde�ned. On the other hand, extra arguments are

simply ignored.

Chapter 13: Input and Output 113

13.2.14 Numeric Input Conversions

This section describes the scanf conversions for reading numeric values.

The `%d' conversion matches an optionally signed integer in decimal radix.

The `%i' conversion matches an optionally signed integer in any of the formats that the

C language de�nes for specifying an integer constant.

For example, any of the strings `10', `0xa', or `012' could be read in as integers under

the `%i' conversion. Each of these speci�es a number with decimal value 10.

The `%o', `%u', and `%x' conversions match unsigned integers in octal, decimal, and hex-

adecimal radices, respectively.

The `%X' conversion is identical to the `%x' conversion. They both permit either uppercase

or lowercase letters to be used as digits.

Unlike the C language scanf, Octave ignores the `h', `l', and `L' modi�ers.

13.2.15 String Input Conversions

This section describes the scanf input conversions for reading string and character

values: `%s' and `%c'.

The `%c' conversion is the simplest: it matches a �xed number of characters, always. The

maximum �eld with says how many characters to read; if you don't specify the maximum,

the default is 1. This conversion does not skip over initial whitespace characters. It reads

precisely the next n characters, and fails if it cannot get that many.

The `%s' conversion matches a string of non-whitespace characters. It skips and dis-

cards initial whitespace, but stops when it encounters more whitespace after having read

something.

For example, reading the input:

hello, world

with the conversion `%10c' produces " hello, wo", but reading the same input with the

conversion `%10s' produces "hello,".

13.2.16 Binary I/O

Octave can read and write binary data using the functions fread and fwrite, which are

patterned after the standard C functions with the same names. The are able to automat-

ically swap the byte order of integer data and convert among ths supported oating point

formats as the data are read.

Built-in Function[val, count] = fread (�d, size, precision, skip, arch)

Read binary data of type precision from the speci�ed �le ID �d.

The optional argument size speci�es the amount of data to read and may be

one of

Inf Read as much as possible, returning a column vector.

114 GNU Octave

nr

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the

number of elements read is not an exact multiple of nr, the last

column is padded with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If

the number of elements read is not an exact multiple of nr, the last

column is padded with zeros.

If size is omitted, a value of Inf is assumed.

The optional argument precision is a string specifying the type of data to read

and may be one of

"char"

"char*1"

"integer*1"

"int8" Single character.

"signed char"

"schar" Signed character.

"unsigned char"

"uchar" Unsigned character.

"short" Short integer.

"unsigned short"

"ushort" Unsigned short integer.

"int" Integer.

"unsigned int"

"uint" Unsigned integer.

"long" Long integer.

"unsigned long"

"ulong" Unsigned long integer.

"float"

"float32"

"real*4" Single precision oat.

"double"

"float64"

"real*8" Double precision oat.

"integer*2"

"int16" Two byte integer.

"integer*4"

"int32" Four byte integer.

The default precision is "uchar".

Chapter 13: Input and Output 115

The optional argument skip speci�es the number of bytes to skip before each

element is read. If it is not speci�ed, a value of 0 is assumed.

The optional argument arch is a string specifying the data format for the �le.

Valid values are

"native" The format of the current machine.

"ieee-le"

IEEE big endian.

"ieee-be"

IEEE little endian.

"vaxd" VAX D oating format.

"vaxg" VAX G oating format.

"cray" Cray oating format.

Conversions are currently only supported for "ieee-be" and "ieee-le" for-

mats.

The data read from the �le is returned in val, and the number of values read is

returned in count

Built-in Functioncount = fwrite (�d, data, precision, skip, arch)

Write data in binary form of type precision to the speci�ed �le ID �d, returning

the number of values successfully written to the �le.

The argument data is a matrix of values that are to be written to the �le. The

values are extracted in column-major order.

The remaining arguments precision, skip, and arch are optional, and are inter-

preted as described for fread.

The behavior of fwrite is unde�ned if the values in data are too large to �t in

the speci�ed precision.

13.2.17 Temporary Files

Built-in Functiontmpnam ()

Return a unique temporary �le name as a string.

Since the named �le is not opened, by tmpnam, it is possible (though relatively

unlikely) that it will not be available by the time your program attempts to

open it.

13.2.18 End of File and Errors

Built-in Functionfeof (�d)

Return 1 if an end-of-�le condition has been encountered for a given �le and

0 otherwise. Note that it will only return 1 if the end of the �le has already

been encountered, not if the next read operation will result in an end-of-�le

condition.

116 GNU Octave

Built-in Functionferror (�d)

Return 1 if an error condition has been encountered for a given �le and 0 oth-

erwise. Note that it will only return 1 if an error has already been encountered,

not if the next operation will result in an error condition.

Built-in Functionfreport ()

Print a list of which �les have been opened, and whether they are open for

reading, writing, or both. For example,

freport ()

a

number mode name

a

a

0 r stdin

a

1 w stdout

a

2 w stderr

a

3 r myfile

13.2.19 File Positioning

Three functions are available for setting and determining the position of the �le pointer

for a given �le.

Built-in Functionftell (�d)

Return the position of the �le pointer as the number of characters from the

beginning of the �le �d.

Built-in Functionfseek (�d, o�set, origin)

Set the �le pointer to any location within the �le �d. The pointer is positioned

o�set characters from the origin, which may be one of the prede�ned variables

SEEK_CUR (current position), SEEK_SET (beginning), or SEEK_END (end of �le).

If origin is omitted, SEEK_SET is assumed. The o�set must be zero, or a value

returned by ftell (in which case origin must be SEEK_SET.

Built-in VariableSEEK SET

Built-in VariableSEEK CUR

Built-in VariableSEEK END

These variables may be used as the optional third argument for the function

fseek.

Built-in Functionfrewind (�d)

Move the �le pointer to the beginning of the �le �d, returning 1 for success, and

0 if an error was encountered. It is equivalent to fseek (�d, 0, SEEK_SET).

The following example stores the current �le position in the variable marker, moves the

pointer to the beginning of the �le, reads four characters, and then returns to the original

position.

marker = ftell (myfile);

frewind (myfile);

fourch = fgets (myfile, 4);

fseek (myfile, marker, SEEK_SET);

Chapter 14: Plotting 117

14 Plotting

All of Octave's plotting functions use gnuplot to handle the actual graphics. There

are two low-level functions, gplot and gsplot, that behave almost exactly like the cor-

responding gnuplot functions plot and splot. A number of other higher level plotting

functions, patterned after the graphics functions found in Matlab version 3.5, are also

available. These higher level functions are all implemented in terms of the two low-level

plotting functions.

14.1 Two-Dimensional Plotting

Commandgplot ranges expression using title style

Generate a 2-dimensional plot.

The ranges, using, title, and style arguments are optional, and the using, title

and style quali�ers may appear in any order after the expression. You may plot

multiple expressions with a single command by separating them with commas.

Each expression may have its own set of quali�ers.

The optional item ranges has the syntax

[x_lo : x_up] [y_lo : y_up]

and may be used to specify the ranges for the axes of the plot, independent of

the actual range of the data. The range for the y axes and any of the individual

limits may be omitted. A range [:] indicates that the default limits should be

used. This normally means that a range just large enough to include all the

data points will be used.

The expression to be plotted must not contain any literal matrices (e.g. [1, 2;

3, 4]) since it is nearly impossible to distinguish a plot range from a matrix

of data.

See the help for gnuplot for a description of the syntax for the optional items.

By default, the gplot command plots the second column of a matrix versus the

�rst. If the matrix only has one column, it is taken as a vector of y-coordinates

and the x-coordinate is taken as the element index, starting with zero. For

example,

gplot rand (100,1) with linespoints

will plot 100 random values and connect them with lines. When gplot is used

to plot a column vector, the indices of the elements are taken as x values.

If there are more than two columns, you can choose which columns to plot with

the using quali�er. For example, given the data

x = (-10:0.1:10)';

data = [x, sin(x), cos(x)];

the command

gplot [-11:11] [-1.1:1.1] \

data with lines, data using 1:3 with impulses

118 GNU Octave

will plot two lines. The �rst line is generated by the command data with

lines, and is a graph of the sine function over the range �10 to 10. The data

is taken from the �rst two columns of the matrix because columns to plot were

not speci�ed with the using quali�er.

The clause using 1:3 in the second part of this plot command speci�es that

the �rst and third columns of the matrix data should be taken as the values to

plot.

In this example, the ranges have been explicitly speci�ed to be a bit larger than

the actual range of the data so that the curves do not touch the border of the

plot.

Commandgset options

Commandgshow options

Commandreplot options

In addition to the basic plotting commands, the whole range of gset and gshow

commands from gnuplot are available, as is replot.

Note that in Octave 2.0, the set and show commands were renamed to gset

and gshow in order to allow for compatibility with the Matlab graphics and

GUI commands in a future version of Octave. (For now, the old set and show

commands do work, but they print an annoying warning message to try to get

people to switch to using gset and gshow.)

The gset and gshow commands allow you to set and show gnuplot parameters.

For more information about the gset and gshow commands, see the documen-

tation for set and show in the gnuplot user's guide (also available on line if

you run gnuplot directly, instead of running it from Octave).

The replot command allows you to force the plot to be redisplayed. This is

useful if you have changed something about the plot, such as the title or axis

labels. The replot command also accepts the same arguments as gplot or

gsplot (except for data ranges) so you can add additional lines to existing

plots.

For example,

gset term tek40

gset output "/dev/plotter"

gset title "sine with lines and cosine with impulses"

replot "sin (x) w l"

will change the terminal type for plotting, add a title to the current plot, add a

graph of sin(x) to the plot, and force the new plot to be sent to the plot device.

This last step is normally required in order to update the plot. This default

is reasonable for slow terminals or hardcopy output devices because even when

you are adding additional lines with a replot command, gnuplot always redraws

the entire plot, and you probably don't want to have a completely new plot

generated every time something as minor as an axis label changes.

The command shg is equivalent to executing replot without any arguments.

Chapter 14: Plotting 119

Built-in Variableautomatic replot

You can tell Octave to redisplay the plot each time anything about it changes

by setting the value of the builtin variable automatic_replot to a nonzero

value. Since this is fairly ine�cient, the default value is 0.

Note that NaN values in the plot data are automatically omitted, and Inf values are

converted to a very large value before calling gnuplot.

The Matlab-style two-dimensional plotting commands are:

Function Fileplot (args)

This function produces two-dimensional plots. Many di�erent combinations of

arguments are possible. The simplest form is

plot (y)

where the argument is taken as the set of y coordinates and the x coordinates

are taken to be the indices of the elements, starting with 1.

If more than one argument is given, they are interpreted as

plot (x, y, fmt ...)

where y and fmt are optional, and any number of argument sets may appear.

The x and y values are interpreted as follows:

� If a single data argument is supplied, it is taken as the set of y coordinates

and the x coordinates are taken to be the indices of the elements, starting

with 1.

� If the �rst argument is a vector and the second is a matrix, the the vector

is plotted versus the columns (or rows) of the matrix. (using whichever

combination matches, with columns tried �rst.)

� If the �rst argument is a matrix and the second is a vector, the the columns

(or rows) of the matrix are plotted versus the vector. (using whichever

combination matches, with columns tried �rst.)

� If both arguments are vectors, the elements of y are plotted versus the

elements of x.

� If both arguments are matrices, the columns of y are plotted versus the

columns of x. In this case, both matrices must have the same number of

rows and columns and no attempt is made to transpose the arguments to

make the number of rows match.

If both arguments are scalars, a single point is plotted.

The fmt argument, if present is interpreted as follows. If fmt is missing, the

default gnuplot line style is assumed.

`-' Set lines plot style (default).

`.' Set dots plot style.

`@' Set points plot style.

`-@' Set linespoints plot style.

`^' Set impulses plot style.

120 GNU Octave

`L' Set steps plot style.

`#' Set boxes plot style.

`~' Set errorbars plot style.

`#~' Set boxerrorbars plot style.

`n' Interpreted as the plot color if n is an integer in the range 1 to 6.

`nm' If nm is a two digit integer and m is an integer in the range 1 to 6,m

is interpreted as the point style. This is only valid in combination

with the @ or -@ speci�ers.

`c' If c is one of "r", "g", "b", "m", "c", or "w", it is interpreted as

the plot color (red, green, blue, magenta, cyan, or white).

`+'

`*'

`o'

`x' Used in combination with the points or linespoints styles, set the

point style.

The color line styles have the following meanings on terminals that support

color.

Number Gnuplot colors (lines)points style

1 red *

2 green +

3 blue o

4 magenta x

5 cyan house

6 brown there exists

Here are some plot examples:

plot (x, y, "@12", x, y2, x, y3, "4", x, y4, "+")

This command will plot y with points of type 2 (displayed as `+') and color

1 (red), y2 with lines, y3 with lines of color 4 (magenta) and y4 with points

displayed as `+'.

plot (b, "*")

This command will plot the data in the variable b will be plotted with points

displayed as `*'.

Function Filehold args

Tell Octave to `hold' the current data on the plot when executing subsequent

plotting commands. This allows you to execute a series of plot commands and

have all the lines end up on the same �gure. The default is for each new plot

command to clear the plot device �rst. For example, the command

hold on

turns the hold state on. An argument of off turns the hold state o�, and hold

with no arguments toggles the current hold state.

Chapter 14: Plotting 121

Function Fileishold

Return 1 if the next line will be added to the current plot, or 0 if the plot device

will be cleared before drawing the next line.

Function Fileclearplot

Function Fileclg

Clear the plot window and any titles or axis labels. The name clg is aliased to

clearplot for compatibility with Matlab.

The commands gplot clear, gsplot clear, and replot clear are equivalent

to clearplot. (Previously, commands like gplot clear would evaluate clear

as an ordinary expression and clear all the visible variables.)

Function Filecloseplot

Close stream to the gnuplot subprocess. If you are using X11, this will close

the plot window.

Function Filepurge tmp �les

Delete the temporary �les created by the plotting commands.

Octave creates temporary data �les for gnuplot and then sends commands to

gnuplot through a pipe. Octave will delete the temporary �les on exit, but if

you are doing a lot of plotting you may want to clean up in the middle of a

session.

A future version of Octave will eliminate the need to use temporary �les to hold

the plot data.

Function Fileaxis (limits)

Sets the axis limits for plots.

The argument limits should be a 2, 4, or 6 element vector. The �rst and second

elements specify the lower and upper limits for the x axis. The third and fourth

specify the limits for the y axis, and the �fth and sixth specify the limits for

the z axis.

With no arguments, axis turns autoscaling on.

If your plot is already drawn, then you need to use replot before the new axis

limits will take e�ect. You can get this to happen automatically by setting the

built-in variable automatic_replot to a nonzero value.

14.2 Specialized Two-Dimensional Plots

Function Filebar (x, y)

Given two vectors of x-y data, bar produces a bar graph.

If only one argument is given, it is taken as a vector of y-values and the x

coordinates are taken to be the indices of the elements.

If two output arguments are speci�ed, the data are generated but not plotted.

For example,

122 GNU Octave

bar (x, y);

and

[xb, yb] = bar (x, y);

plot (xb, yb);

are equivalent.

Function Filecontour (z, n, x, y)

Make a contour plot of the three-dimensional surface described by z. Someone

needs to improve gnuplot's contour routines before this will be very useful.

Function Filehist (y, x)

Produce histogram counts or plots.

With one vector input argument, plot a histogram of the values with 10 bins.

The range of the histogram bins is determined by the range of the data.

Given a second scalar argument, use that as the number of bins.

Given a second vector argument, use that as the centers of the bins, with the

width of the bins determined from the adjacent values in the vector.

Extreme values are lumped in the �rst and last bins.

With two output arguments, produce the values nn and xx such that bar (xx,

nn) will plot the histogram.

Function Fileloglog (args)

Make a two-dimensional plot using log scales for both axes. See the description

of plot above for a description of the arguments that loglog will accept.

Function Filepolar (theta, rho)

Make a two-dimensional plot given polar the coordinates theta and rho.

Function Filesemilogx (args)

Make a two-dimensional plot using a log scale for the x axis. See the description

of plot above for a description of the arguments that semilogx will accept.

Function Filesemilogy (args)

Make a two-dimensional plot using a log scale for the y axis. See the description

of plot above for a description of the arguments that semilogy will accept.

Function Filestairs (x, y)

Given two vectors of x-y data, bar produces a `stairstep' plot.

If only one argument is given, it is taken as a vector of y-values and the x

coordinates are taken to be the indices of the elements.

If two output arguments are speci�ed, the data are generated but not plotted.

For example,

stairs (x, y);

and

[xs, ys] = stairs (x, y);

plot (xs, ys);

are equivalent.

Chapter 14: Plotting 123

14.3 Three-Dimensional Plotting

Commandgsplot ranges expression using title style

Generate a 3-dimensional plot.

The ranges, using, title, and style arguments are optional, and the using, title

and style quali�ers may appear in any order after the expression. You may plot

multiple expressions with a single command by separating them with commas.

Each expression may have its own set of quali�ers.

The optional item ranges has the syntax

[x_lo : x_up] [y_lo : y_up] [z_lo : z_up]

and may be used to specify the ranges for the axes of the plot, independent of

the actual range of the data. The range for the y and z axes and any of the

individual limits may be omitted. A range [:] indicates that the default limits

should be used. This normally means that a range just large enough to include

all the data points will be used.

The expression to be plotted must not contain any literal matrices (e.g. [1, 2;

3, 4]) since it is nearly impossible to distinguish a plot range from a matrix

of data.

See the help for gnuplot for a description of the syntax for the optional items.

By default, the gsplot command plots each column of the expression as the z

value, using the row index as the x value, and the column index as the y value.

The indices are counted from zero, not one. For example,

gsplot rand (5, 2)

will plot a random surface, with the x and y values taken from the row and

column indices of the matrix.

If parametric plotting mode is set (using the command gset parametric, then

gsplot takes the columns of the matrix three at a time as the x, y and z values

that de�ne a line in three space. Any extra columns are ignored, and the x

and y values are expected to be sorted. For example, with parametric set, it

makes sense to plot a matrix like

2

4

1 1 3 2 1 6 3 1 9

1 2 2 2 2 5 3 2 8

1 3 1 2 3 4 3 3 7

3

5

but not rand (5, 30).

The Matlab-style three-dimensional plotting commands are:

Function Filemesh (x, y, z)

Plot a mesh given matrices x, and y from meshdom and a matrix z corresponding

to the x and y coordinates of the mesh.

Function Filemeshdom (x, y)

Given vectors of x and y coordinates, return two matrices corresponding to the

x and y coordinates of the mesh.

See the �le `sombrero.m' for an example of using mesh and meshdom.

124 GNU Octave

Built-in Variablegnuplot binary

The name of the program invoked by the plot command. The default value is

"gnuplot". See Appendix C [Installation], page 207.

Built-in Variablegnuplot has frames

If the value of this variable is nonzero, Octave assumes that your copy of gnuplot

has support for multiple frames that is included in recent 3.6beta releases. It's

initial value is determined by con�gure, but it can be changed in your startup

script or at the command line in case con�gure got it wrong, or if you upgrade

your gnuplot installation.

Function File�gure (n)

Set the current plot window to plot window n. This function currently requires

X11 and a version of gnuplot that supports multiple frames.

Built-in Variablegnuplot has multiplot

If the value of this variable is nonzero, Octave assumes that your copy of gnuplot

has the multiplot support that is included in recent 3.6beta releases. It's initial

value is determined by con�gure, but it can be changed in your startup script

or at the command line in case con�gure got it wrong, or if you upgrade your

gnuplot installation.

14.4 Plot Annotations

Function Filegrid

For two-dimensional plotting, force the display of a grid on the plot.

Function Filetitle (string)

Specify a title for the plot. If you already have a plot displayed, use the com-

mand replot to redisplay it with the new title.

Function Filexlabel (string)

Function Fileylabel (string)

Function Filezlabel (string)

Specify x, y, and z axis labels for the plot. If you already have a plot displayed,

use the command replot to redisplay it with the new labels.

14.5 Multiple Plots on One Page

The following functions all require a version of gnuplot that supports the multiplot

feature.

Function Filemplot (x, y)

Function Filemplot (x, y, fmt)

Function Filemplot (x1, y1, x2, y2)

This is a modi�ed version of the plot function that works with the multiplot

version of gnuplot to plot multiple plots per page. This plot version automat-

ically advances to the next subplot position after each set of arguments are

processed.

Chapter 14: Plotting 125

See the description of the plot function for the various options.

Function Filemultiplot (xn, yn)

Sets and resets multiplot mode.

If the arguments are non-zero, multiplot will set up multiplot mode with xn,

yn subplots along the x and y axes. If both arguments are zero, multiplot

closes multiplot mode.

Function Fileoneplot ()

If in multiplot mode, switches to single plot mode.

Function Fileplot border (...)

Multiple arguments allowed to specify the sides on which the border is shown.

Allowed arguments include:

"blank" No borders displayed.

"all" All borders displayed

"north" North Border

"south" South Border

"east" East Border

"west" West Border

The arguments may be abbreviated to single characters. Without any argu-

ments, plot_border turns borders o�.

Function Filesubplot (rows, cols, index)

Function Filesubplot (rcn)

Sets gnuplot in multiplot mode and plots in location given by index (there are

cols by rows subwindows).

Input:

rows Number of rows in subplot grid.

columns Number of columns in subplot grid.

index Index of subplot where to make the next plot.

If only one argument is supplied, then it must be a three digit value specifying

the location in digits 1 (rows) and 2 (columns) and the plot index in digit 3.

The plot index runs row-wise. First all the columns in a row are �lled and then

the next row is �lled.

For example, a plot with 4 by 2 grid will have plot indices running as follows:

1 2 3 4

5 6 7 8

126 GNU Octave

Function Filesubwindow (xn, yn)

Sets the subwindow position in multiplot mode for the next plot. The multiplot

mode has to be previously initialized using the multiplot function, otherwise

this command just becomes an alias to multiplot

Function Filetop title (string)

Function Filebottom title (string)

Makes a title with text string at the top (bottom) of the plot.

Chapter 15: Matrix Manipulation 127

15 Matrix Manipulation

There are a number of functions available for checking to see if the elements of a matrix

meet some condition, and for rearranging the elements of a matrix. For example, Octave

can easily tell you if all the elements of a matrix are �nite, or are less than some speci�ed

value. Octave can also rotate the elements, extract the upper- or lower-triangular parts, or

sort the columns of a matrix.

15.1 Finding Elements and Checking Conditions

The functions any and all are useful for determining whether any or all of the elements

of a matrix satisfy some condition. The find function is also useful in determining which

elements of a matrix meet a speci�ed condition.

Built-in Functionany (x)

For a vector argument, return 1 if any element of the vector is nonzero.

For a matrix argument, return a row vector of ones and zeros with each element

indicating whether any of the elements of the corresponding column of the

matrix are nonzero. For example,

any (eye (2, 4))

)

[1, 1, 0, 0]

To see if any of the elements of a matrix are nonzero, you can use a statement

like

any (any (a))

Built-in Functionall (x)

The function all behaves like the function any, except that it returns true only

if all the elements of a vector, or all the elements in a column of a matrix, are

nonzero.

Since the comparison operators (see Section 8.4 [Comparison Ops], page 61) return

matrices of ones and zeros, it is easy to test a matrix for many things, not just whether the

elements are nonzero. For example,

all (all (rand (5) < 0.9))

)

0

tests a random 5 by 5 matrix to see if all of it's elements are less than 0.9.

Note that in conditional contexts (like the test clause of if and while statements) Octave

treats the test as if you had typed all (all (condition)).

Function File[err, y1, ...] = common size (x1, ...)

Determine if all input arguments are either scalar or of common size. If so, err

is zero, and yi is a matrix of the common size with all entries equal to xi if this

is a scalar or xi otherwise. If the inputs cannot be brought to a common size,

errorcode is 1, and yi is xi. For example,

128 GNU Octave

[errorcode, a, b] = common_size ([1 2; 3 4], 5)

)

errorcode = 0

)

a = [1, 2; 3, 4]

)

b = [5, 5; 5, 5]

This is useful for implementing functions where arguments can either be scalars

or of common size.

Function Filedi� (x, k)

If x is a vector of length n, diff (x) is the vector of �rst di�erences x

2

�

x

1

; : : : ; x

n

� x

n�1

.

If x is a matrix, diff (x) is the matrix of column di�erences.

The second argument is optional. If supplied, diff (x, k), where k is a non-

negative integer, returns the k-th di�erences.

Mapping Functionisinf (x)

Return 1 for elements of x that are in�nite and zero otherwise. For example,

isinf ([13, Inf, NaN])

)

[0, 1, 0]

Mapping Functionisnan (x)

Return 1 for elements of x that are NaN values and zero otherwise. For example,

isnan ([13, Inf, NaN])

)

[0, 0, 1]

Mapping Function�nite (x)

Return 1 for elements of x that are NaN values and zero otherwise. For example,

finite ([13, Inf, NaN])

)

[1, 0, 0]

Loadable Function�nd (x)

Return a vector of indices of nonzero elements of a matrix. To obtain a single

index for each matrix element, Octave pretends that the columns of a matrix

form one long vector (like Fortran arrays are stored). For example,

find (eye (2))

)

[1; 4]

If two outputs are requested, find returns the row and column indices of

nonzero elements of a matrix. For example,

[i, j] = find (2 * eye (2))

)

i = [1; 2]

)

j = [1; 2]

If three outputs are requested, find also returns a vector containing the the

nonzero values. For example,

[i, j, v] = find (3 * eye (2))

)

i = [1; 2]

)

j = [1; 2]

)

v = [3; 3]

Chapter 15: Matrix Manipulation 129

15.2 Rearranging Matrices

Function Fileiplr (x)

Return a copy of x with the order of the columns reversed. For example,

fliplr ([1, 2; 3, 4])

)

2 1

4 3

Function Fileipud (x)

Return a copy of x with the order of the rows reversed. For example,

flipud ([1, 2; 3, 4])

)

3 4

1 2

Function Filerot90 (x, n)

Return a copy of x with the elements rotated counterclockwise in 90-degree

increments. The second argument is optional, and speci�es how many 90-degree

rotations are to be applied (the default value is 1). Negative values of n rotate

the matrix in a clockwise direction. For example,

rot90 ([1, 2; 3, 4], -1)

)

3 1

4 2

rotates the given matrix clockwise by 90 degrees. The following are all equiva-

lent statements:

rot90 ([1, 2; 3, 4], -1)

�

rot90 ([1, 2; 3, 4], 3)

�

rot90 ([1, 2; 3, 4], 7)

Function Filereshape (a, m, n)

Return a matrix with m rows and n columns whose elements are taken from

the matrix a. To decide how to order the elements, Octave pretends that the

elements of a matrix are stored in column-major order (like Fortran arrays are

stored).

For example,

reshape ([1, 2, 3, 4], 2, 2)

)

1 3

2 4

If the variable do_fortran_indexing is nonzero, the reshape function is equiv-

alent to

retval = zeros (m, n);

retval (:) = a;

but it is somewhat less cryptic to use reshape instead of the colon operator.

Note that the total number of elements in the original matrix must match the

total number of elements in the new matrix.

130 GNU Octave

Function Fileshift (x, b)

If x is a vector, perform a circular shift of length b of the elements of x.

If x is a matrix, do the same for each column of x.

Loadable Function[s, i] = sort (x)

Return a copy of x with the elements elements arranged in increasing order.

For matrices, sort orders the elements in each column.

For example,

sort ([1, 2; 2, 3; 3, 1])

)

1 1

2 2

3 3

The sort function may also be used to produce a matrix containing the original

row indices of the elements in the sorted matrix. For example,

[s, i] = sort ([1, 2; 2, 3; 3, 1])

)

s = 1 1

2 2

3 3

)

i = 1 3

2 1

3 2

Since the sort function does not allow sort keys to be speci�ed, it can't be used to order

the rows of a matrix according to the values of the elements in various columns

1

in a single

call. Using the second output, however, it is possible to sort all rows based on the values

in a given column. Here's an example that sorts the rows of a matrix based on the values

in the second column.

a = [1, 2; 2, 3; 3, 1];

[s, i] = sort (a (:, 2));

a (i, :)

)

3 1

1 2

2 3

Function Filetril (a, k)

Function Filetriu (a, k)

Return a new matrix formed by extracting extract the lower (tril) or upper

(triu) triangular part of the matrix a, and setting all other elements to zero.

The second argument is optional, and speci�es how many diagonals above or

below the main diagonal should also be set to zero.

The default value of k is zero, so that triu and tril normally include the main

diagonal as part of the result matrix.

If the value of k is negative, additional elements above (for tril) or below (for

triu) the main diagonal are also selected.

1

For example, to �rst sort based on the values in column 1, and then, for any values that

are repeated in column 1, sort based on the values found in column 2, etc.

Chapter 15: Matrix Manipulation 131

The absolute value of k must not be greater than the number of sub- or super-

diagonals.

For example,

tril (ones (3), -1)

)

0 0 0

1 0 0

1 1 0

and

tril (ones (3), 1)

)

1 1 0

1 1 1

1 1 1

Function Filevec (x)

Return the vector obtained by stacking the columns of the matrix x one above

the other.

Function Filevech (x)

Return the vector obtained by eliminating all supradiagonal elements of the

square matrix x and stacking the result one column above the other.

15.3 Special Utility Matrices

Built-in Functioneye (x)

Built-in Functioneye (n, m)

Return an identity matrix. If invoked with a single scalar argument, eye re-

turns a square matrix with the dimension speci�ed. If you supply two scalar

arguments, eye takes them to be the number of rows and columns. If given a

vector with two elements, eye uses the values of the elements as the number of

rows and columns, respectively. For example,

eye (3)

)

1 0 0

0 1 0

0 0 1

The following expressions all produce the same result:

eye (2)

�

eye (2, 2)

�

eye (size ([1, 2; 3, 4])

For compatibility with Matlab, calling eye with no arguments is equivalent

to calling it with an argument of 1.

Built-in Functionones (x)

Built-in Functionones (n, m)

Return a matrix whose elements are all 1. The arguments are handled the same

as the arguments for eye.

132 GNU Octave

If you need to create a matrix whose values are all the same, you should use an

expression like

val_matrix = val * ones (n, m)

Built-in Functionzeros (x)

Built-in Functionzeros (n, m)

Return a matrix whose elements are all 0. The arguments are handled the same

as the arguments for eye.

Loadable Functionrand (x)

Loadable Functionrand (n, m)

Loadable Functionrand ("seed", x)

Return a matrix with random elements uniformly distributed on the interval (0,

1). The arguments are handled the same as the arguments for eye. In addition,

you can set the seed for the random number generator using the form

rand ("seed", x)

where x is a scalar value. If called as

rand ("seed")

rand returns the current value of the seed.

Loadable Functionrandn (x)

Loadable Functionrandn (n, m)

Loadable Functionrandn ("seed", x)

Return a matrix with normally distributed random elements. The arguments

are handled the same as the arguments for eye. In addition, you can set the

seed for the random number generator using the form

randn ("seed", x)

where x is a scalar value. If called as

randn ("seed")

randn returns the current value of the seed.

The rand and randn functions use separate generators. This ensures that

rand ("seed", 13);

randn ("seed", 13);

u = rand (100, 1);

n = randn (100, 1);

and

rand ("seed", 13);

randn ("seed", 13);

u = zeros (100, 1);

n = zeros (100, 1);

for i = 1:100

u(i) = rand ();

n(i) = randn ();

end

produce equivalent results.

Chapter 15: Matrix Manipulation 133

Normally, rand and randn obtain their initial seeds from the system clock, so that the

sequence of random numbers is not the same each time you run Octave. If you really do

need for to reproduce a sequence of numbers exactly, you can set the seed to a speci�c value.

If it is invoked without arguments, rand and randn return a single element of a random

sequence.

The rand and randn functions use Fortran code from Ranlib, a library of fortran

routines for random number generation, compiled by Barry W. Brown and James Lovato

of the Department of Biomathematics at The University of Texas, M.D. Anderson Cancer

Center, Houston, TX 77030.

Built-in Functiondiag (v, k)

Return a diagonal matrix with vector v on diagonal k. The second argument

is optional. If it is positive, the vector is placed on the k-th super-diagonal. If

it is negative, it is placed on the -k-th sub-diagonal. The default value of k is

0, and the vector is placed on the main diagonal. For example,

diag ([1, 2, 3], 1)

)

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

The functions linspace and logspace make it very easy to create vectors with evenly

or logarithmically spaced elements. See Section 4.2 [Ranges], page 35.

Function Filelinspace (base, limit, n)

Return a row vector with n linearly spaced elements between base and limit.

The number of elements, n, must be greater than 1. The base and limit are

always included in the range. If base is greater than limit, the elements are

stored in decreasing order. If the number of points is not speci�ed, a value of

100 is used.

The linspace function always returns a row vector, regardless of the value of

prefer_column_vectors.

Function Filelogspace (base, limit, n)

Similar to linspace except that the values are logarithmically spaced from

10

base

to 10

limit

.

If limit is equal to �, the points are between 10

base

and �, not 10

base

and

10

�

, in order to be compatible with the corresponding Matlab function.

Built-in Variabletreat neg dim as zero

If the value of treat_neg_dim_as_zero is nonzero, expressions like

eye (-1)

produce an empty matrix (i.e., row and column dimensions are zero). Other-

wise, an error message is printed and control is returned to the top level. The

default value is 0.

134 GNU Octave

15.4 Famous Matrices

The following functions return famous matrix forms.

Function Filehadamard (k)

Return the Hadamard matrix of order n = 2

k

.

Function Filehankel (c, r)

Return the Hankel matrix constructed given the �rst column c, and (optionally)

the last row r. If the last element of c is not the same as the �rst element of r,

the last element of c is used. If the second argument is omitted, the last row is

taken to be the same as the �rst column.

A Hankel matrix formed from an m-vector c, and an n-vector r, has the ele-

ments

H(i; j) =

�

c

i+j�1

; i+ j � 1 � m;

r

i+j�m

; otherwise.

Function Filehilb (n)

Return the Hilbert matrix of order n. The i; j element of a Hilbert matrix is

de�ned as

H(i; j) =

1

(i+ j � 1)

Function Fileinvhilb (n)

Return the inverse of a Hilbert matrix of order n. This is exact. Compare with

the numerical calculation of inverse (hilb (n)), which su�ers from the ill-

conditioning of the Hilbert matrix, and the �nite precision of your computer's

oating point arithmetic.

Function Filetoeplitz (c, r)

Return the Toeplitz matrix constructed given the �rst column c, and (option-

ally) the �rst row r. If the �rst element of c is not the same as the �rst element

of r, the �rst element of c is used. If the second argument is omitted, the �rst

row is taken to be the same as the �rst column.

A square Toeplitz matrix has the form

2

6

6

6

6

6

4

c

0

r

1

r

2

: : : r

n

c

1

c

0

r

1

c

n�1

c

2

c

1

c

0

c

n�2

.

.

.

.

.

.

c

n

c

n�1

c

n�2

: : : c

0

3

7

7

7

7

7

5

:

Function Filevander (c)

Return the Vandermonde matrix whose next to last column is c.

A Vandermonde matrix has the form

2

6

6

6

4

c

n

0

: : : c

2

0

c

0

1

c

n

1

: : : c

2

1

c

1

1

.

.

.

.

.

.

.

.

.

.

.

.

c

n

n

: : : c

2

n

c

n

1

3

7

7

7

5

:

Chapter 16: Arithmetic 135

16 Arithmetic

Unless otherwise noted, all of the functions described in this chapter will work for real

and complex scalar or matrix arguments.

16.1 Utility Functions

The following functions are available for working with complex numbers. Each expects a

single argument. They are called mapping functions because when given a matrix argument,

they apply the given function to each element of the matrix.

Mapping Functionceil (x)

Return the smallest integer not less than x. If x is complex, return ceil (real

(x)) + ceil (imag (x)) * I.

Mapping Functionexp (x)

Compute the exponential of x. To compute the matrix exponential, see Chap-

ter 17 [Linear Algebra], page 143.

Mapping Function�x (x)

Truncate x toward zero. If x is complex, return fix (real (x)) + fix (imag

(x)) * I.

Mapping Functionoor (x)

Return the largest integer not greater than x. If x is complex, return floor

(real (x)) + floor (imag (x)) * I.

Mapping Functiongcd (x, ...)

Compute the greatest common divisor of the elements of x, or the list of all the

arguments. For example,

gcd (a1, ..., ak)

is the same as

gcd ([a1, ..., ak])

An optional second return value, v contains an integer vector such that

g = v(1) * a(k) + ... + v(k) * a(k)

Mapping Functionlcm (x, ...)

Compute the least common multiple of the elements elements of x, or the list

of all the arguments. For example,

lcm (a1, ..., ak)

is the same as

lcm ([a1, ..., ak]).

Mapping Functionlog (x)

Compute the natural logarithm of x. To compute the matrix logarithm, see

Chapter 17 [Linear Algebra], page 143.

136 GNU Octave

Mapping Functionlog10 (x)

Compute the base-10 logarithm of x.

Mapping Functiony = log2 (x)

Mapping Function[f, e] log2 (x)

Compute the base-2 logarithm of x. With two outputs, returns f and e such

that 1=2 <= jf j < 1 and x = f � 2

e

.

Loadable Functionmax (x)

For a vector argument, return the maximum value. For a matrix argument,

return the maximum value from each column, as a row vector. Thus,

max (max (x))

returns the largest element of x.

For complex arguments, the magnitude of the elements are used for comparison.

Loadable Functionmin (x)

Like max, but return the minimum value.

Function Filenextpow2 (x)

If x is a scalar, returns the �rst integer n such that 2

n

� jxj.

If x is a vector, return nextpow2 (length (x)).

Mapping Functionpow2 (x)

Mapping Functionpow2 (f, e)

With one argument, computes 2

x

for each element of x. With two arguments,

returns f � 2

e

.

Mapping Functionrem (x, y)

Return the remainder of x / y , computed using the expression

x - y .* fix (x ./ y)

An error message is printed if the dimensions of the arguments do not agree,

or if either of the arguments is complex.

Mapping Functionround (x)

Return the integer nearest to x. If x is complex, return round (real (x)) +

round (imag (x)) * I.

Mapping Functionsign (x)

Compute the signum function, which is de�ned as

sign(x) =

8

<

:

1; x > 0;

0; x = 0;

�1; x < 0.

For complex arguments, sign returns x ./ abs (x).

Mapping Functionsqrt (x)

Compute the square root of x. If x is negative, a complex result is returned.

To compute the matrix square root, see Chapter 17 [Linear Algebra], page 143.

Chapter 16: Arithmetic 137

Mapping Functionxor (x, y)

Return the `exclusive or' of the entries of x and y. For boolean expressions x

and y, xor (x, y) is true if and only if x or y is true, but not if both x and y

are true.

16.2 Complex Arithmetic

The following functions are available for working with complex numbers. Each expects

a single argument. Given a matrix they work on an element by element basis. In the

descriptions of the following functions, z is the complex number x+ iy, where i is de�ned

as

p

�1.

Mapping Functionabs (z)

Compute the magnitude of z, de�ned as jzj =

p

x

2

+ y

2

.

For example,

abs (3 + 4i)

)

5

Mapping Functionarg (z)

Mapping Functionangle (z)

Compute the argument of z, de�ned as � = tan

�1

(y=x).

in radians.

For example,

arg (3 + 4i)

)

0.92730

Mapping Functionconj (z)

Return the complex conjugate of z, de�ned as �z = x� iy.

Mapping Functionimag (z)

Return the imaginary part of z as a real number.

Mapping Functionreal (z)

Return the real part of z.

16.3 Trigonometry

Octave provides the following trigonometric functions:

Mapping Functionsin (z)

Mapping Functioncos (z)

Mapping Functiontan (z)

Mapping Functionsec (z)

Mapping Functioncsc (z)

Mapping Functioncot (z)

The ordinary trigonometric functions.

138 GNU Octave

Mapping Functionasin (z)

Mapping Functionacos (z)

Mapping Functionatan (z)

Mapping Functionasec (z)

Mapping Functionacsc (z)

Mapping Functionacot (z)

The ordinary inverse trigonometric functions.

Mapping Functionsinh (z)

Mapping Functioncosh (z)

Mapping Functiontanh (z)

Mapping Functionsech (z)

Mapping Functioncsch (z)

Mapping Functioncoth (z)

Hyperbolic trigonometric functions.

Mapping Functionasinh (z)

Mapping Functionacosh (z)

Mapping Functionatanh (z)

Mapping Functionasech (z)

Mapping Functionacsch (z)

Mapping Functionacoth (z)

Inverse hyperbolic trigonometric functions.

Each of these functions expect a single argument. For matrix arguments, they work on

an element by element basis. For example,

sin ([1, 2; 3, 4])

)

0.84147 0.90930

0.14112 -0.75680

Mapping Functionatan2 (y, x)

Return the arctangent of y/x. The signs of the arguments are used to determine

the quadrant of the result, which is in the range � to ��.

16.4 Sums and Products

Built-in Functionsum (x)

For a vector argument, return the sum of all the elements. For a matrix ar-

gument, return the sum of the elements in each column, as a row vector. The

sum of an empty matrix is 0 if it has no columns, or a vector of zeros if it has

no rows (see Section 4.1.1 [Empty Matrices], page 34).

Built-in Functionprod (x)

For a vector argument, return the product of all the elements. For a matrix

argument, return the product of the elements in each column, as a row vector.

The product of an empty matrix is 1 if it has no columns, or a vector of ones

if it has no rows (see Section 4.1.1 [Empty Matrices], page 34).

Chapter 16: Arithmetic 139

Built-in Functioncumsum (x)

Return the cumulative sum of each column of x. For example,

cumsum ([1, 2; 3, 4])

)

1 2

4 6

Built-in Functioncumprod (x)

Return the cumulative product of each column of x. For example,

cumprod ([1, 2; 3, 4])

)

1 2

3 8

Built-in Functionsumsq (x)

For a vector argument, return the sum of the squares of all the elements. For a

matrix argument, return the sum of the squares of the elements in each column,

as a row vector.

16.5 Special Functions

Mapping Functionbeta (a, b)

Return the Beta function,

B(a; b) =

�(a)�(b)

�(a + b)

:

Mapping Functionbetai (a, b, x)

Return the incomplete Beta function,

�(a; b; x) = B(a; b)

�1

Z

x

0

t

(a�z)

(1� t)

(b�1)

dt:

If x has more than one component, both a and b must be scalars. If x is a

scalar, a and b must be of compatible dimensions.

Mapping Functionbincoe� (n, k)

Return the binomial coe�cient of n and k, de�ned as

n

k

!

=

n(n � 1)(n� 2) � � �(n� k + 1)

k!

For example,

bincoeff (5, 2)

)

10

Mapping Functionerf (z)

Computes the error function,

erf(z) =

2

p

�

Z

z

0

e

�t

2

dt

Mapping Functionerfc (z)

Computes the complementary error function, 1� erf(z).

140 GNU Octave

Mapping Functioner�nv (z)

Computes the inverse of the error function,

Mapping Functiongamma (z)

Computes the Gamma function,

�(z) =

Z

1

0

t

z�1

e

�t

dt:

Mapping Functiongammai (a, x)

Computes the incomplete gamma function,

(a; x) =

Z

x

0

e

�t

t

a�1

dt

�(a)

If a is scalar, then gammai (a, x) is returned for each element of x and vice

versa.

If neither a nor x is scalar, the sizes of a and x must agree, and gammai is

applied element-by-element.

Mapping Functionlgamma (a, x)

Mapping Functiongammaln (a, x)

Return the natural logarithm of the gamma function.

Function Filecross (x, y)

Computes the vector cross product of the two 3-dimensional vectors x and y.

For example,

cross ([1,1,0], [0,1,1])

)

[1; -1; 1]

Function Filecommutation matrix (m, n)

Return the commutation matrix K

m;n

which is the unique mn�mn matrix

such that K

m;n

� vec(A) = vec(A

T

) for all m� n matrices A.

If only one argument m is given, K

m;m

is returned.

See Magnus and Neudecker (1988), Matrix di�erential calculus with applica-

tions in statistics and econometrics.

Function Fileduplication matrix (n)

Return the duplication matrix D

n

which is the unique n

2

�n(n+1)=2 matrix

such that D

n

� vech(A) = vec(A) for all symmetric n� n matrices A.

See Magnus and Neudecker (1988), Matrix di�erential calculus with applica-

tions in statistics and econometrics.

Chapter 16: Arithmetic 141

16.6 Mathematical Constants

Built-in VariableI

Built-in VariableJ

Built-in Variablei

Built-in Variablej

A pure imaginary number, de�ned as

p

�1. The I and J forms are true con-

stants, and cannot be modi�ed. The i and j forms are like ordinary variables,

and may be used for other purposes. However, unlike other variables, they once

again assume their special prede�ned values if they are cleared See Section 7.2

[Status of Variables], page 48.

Built-in VariableInf

Built-in Variableinf

In�nity. This is the result of an operation like 1/0, or an operation that results

in a oating point overow.

Built-in VariableNaN

Built-in Variablenan

Not a number. This is the result of an operation like 0=0, or 1�1, or any

operation with a NaN.

Built-in Variablepi

The ratio of the circumference of a circle to its diameter. Internally, pi is

computed as `4.0 * atan (1.0)'.

Built-in Variablee

The base of natural logarithms. The constant e satis�es the equation log(e) =

1.

Built-in Variableeps

The machine precision. More precisely, eps is the largest relative spacing be-

tween any two adjacent numbers in the machine's oating point system. This

number is obviously system-dependent. On machines that support 64 bit IEEE

oating point arithmetic, eps is approximately 2:2204� 10

�16

.

Built-in Variablerealmax

The largest oating point number that is representable. The actual value is

system-dependent. On machines that support 64 bit IEEE oating point arith-

metic, realmax is approximately 1:7977� 10

308

.

Built-in Variablerealmin

The smallest oating point number that is representable. The actual value

is system-dependent. On machines that support 64 bit IEEE oating point

arithmetic, realmin is approximately 2:2251� 10

�308

.

142 GNU Octave

Chapter 17: Linear Algebra 143

17 Linear Algebra

This chapter documents the linear algebra functions of Octave. Reference material for

many of these functions may be found in Golub and Van Loan, Matrix Computations, 2nd

Ed., Johns Hopkins, 1989, and in Lapack Users' Guide, SIAM, 1992.

17.1 Basic Matrix Functions

Loadable Functionaa = balance (a, opt)

Loadable Function[dd, aa] = balance (a, opt)

Loadable Function[cc, dd, aa, bb] = balance (a, b, opt)

[dd, aa] = balance (a) returns aa = dd \ a * dd. aa is a matrix whose row

and column norms are roughly equal in magnitude, and dd = p * d, where

p is a permutation matrix and d is a diagonal matrix of powers of two. This

allows the equilibration to be computed without roundo�. Results of eigenvalue

calculation are typically improved by balancing �rst.

[cc, dd, aa, bb] = balance (a, b) returns aa = cc*a*dd and bb = cc*b*dd),

where aa and bb have non-zero elements of approximately the same magnitude

and cc and dd are permuted diagonal matrices as in dd for the algebraic eigen-

value problem.

The eigenvalue balancing option opt is selected as follows:

"N", "n" No balancing; arguments copied, transformation(s) set to identity.

"P", "p" Permute argument(s) to isolate eigenvalues where possible.

"S", "s" Scale to improve accuracy of computed eigenvalues.

"B", "b" Permute and scale, in that order. Rows/columns of a (and b) that

are isolated by permutation are not scaled. This is the default

behavior.

Algebraic eigenvalue balancing uses standard Lapack routines.

Generalized eigenvalue problem balancing uses Ward's algorithm (SIAM Jour-

nal on Scienti�c and Statistical Computing, 1981).

cond (a)

Compute the (two-norm) condition number of a matrix. cond (a) is de�ned as

norm (a) * norm (inv (a)), and is computed via a singular value decomposi-

tion.

Loadable Functiondet (a)

Compute the determinant of a using Linpack.

Loadable Functionlambda = eig (a)

Loadable Function[v, lambda] = eig (a)

The eigenvalues (and eigenvectors) of a matrix are computed in a several step

process which begins with a Hessenberg decomposition, followed by a Schur de-

composition, from which the eigenvalues are apparent. The eigenvectors, when

desired, are computed by further manipulations of the Schur decomposition.

144 GNU Octave

Loadable FunctionG = givens (x, y)

Loadable Function[c, s] = givens (x, y)

Return a 2� 2 orthogonal matrix

G =

�

c s

�s

0

c

�

such that

G

�

x

y

�

=

�

�

0

�

with x and y scalars.

For example,

givens (1, 1)

)

0.70711 0.70711

-0.70711 0.70711

Loadable Functioninv (a)

Loadable Functioninverse (a)

Compute the inverse of the square matrix a.

Function Filenorm (a, p)

Compute the p-norm of the matrix a. If the second argument is missing, p = 2

is assumed.

If a is a matrix:

p = 1 1-norm, the largest column sum of a.

p = 2 Largest singular value of a.

p = Inf In�nity norm, the largest row sum of a.

p = "fro"

Frobenius norm of a, sqrt (sum (diag (a' * a))).

If a is a vector or a scalar:

p = Inf max (abs (a)).

p = -Inf min (abs (a)).

other p-norm of a, (sum (abs (a) .^ p)) ^ (1/p).

Function Filenull (a, tol)

Return an orthonormal basis of the null space of a.

The dimension of the null space is taken as the number of singular values of a

not greater than tol. If the argument tol is missing, it is computed as

max (size (a)) * max (svd (a)) * eps

Function Fileorth (a, tol)

Return an orthonormal basis of the range space of a.

The dimension of the range space is taken as the number of singular values of

a greater than tol. If the argument tol is missing, it is computed as

max (size (a)) * max (svd (a)) * eps

Chapter 17: Linear Algebra 145

Function Filepinv (x, tol)

Return the pseudoinverse of x. Singular values less than tol are ignored.

If the second argument is omitted, it is assumed that

tol = max (size (x)) * sigma_max (x) * eps,

where sigma_max (x) is the maximal singular value of x.

Function Filerank (a, tol)

Compute the rank of a, using the singular value decomposition. The rank is

taken to be the number of singular values of a that are greater than the speci�ed

tolerance tol. If the second argument is omitted, it is taken to be

tol = max (size (a)) * sigma (1) * eps;

where eps is machine precision and sigma is the largest singular value of a.

Function Filetrace (a)

Compute the trace of a, sum (diag (a)).

17.2 Matrix Factorizations

Loadable Functionchol (a)

Compute the Cholesky factor, r, of the symmetric positive de�nite matrix a,

where R

T

R = A.

Loadable Functionh = hess (a)

Loadable Function[p, h] = hess (a)

Compute the Hessenberg decomposition of the matrix a.

The Hessenberg decomposition is usually used as the �rst step in an eigen-

value computation, but has other applications as well (see Golub, Nash, and

Van Loan, IEEE Transactions on Automatic Control, 1979. The Hessenberg

decomposition is

A = PHP

T

where P is a square unitary matrix (P

H

P = I), and H is upper Hessenberg

(H

i;j

= 0; 8i � j + 1).

Loadable Function[l, u, p] = lu (a)

Compute the LU decomposition of a, using subroutines from Lapack. The

result is returned in a permuted form, according to the optional return value p.

For example, given the matrix a = [1, 2; 3, 4],

[l, u, p] = lu (a)

returns

l =

1.00000 0.00000

0.33333 1.00000

u =

146 GNU Octave

3.00000 4.00000

0.00000 0.66667

p =

0 1

1 0

Loadable Function[q, r, p] = qr (a)

Compute the QR factorization of a, using standard Lapack subroutines. For

example, given the matrix a = [1, 2; 3, 4],

[q, r] = qr (a)

returns

q =

-0.31623 -0.94868

-0.94868 0.31623

r =

-3.16228 -4.42719

0.00000 -0.63246

The qr factorization has applications in the solution of least squares problems

min

x

kAx� bk

2

for overdetermined systems of equations (i.e., A is a tall, thin matrix). The

QR factorization is QR = A where Q is an orthogonal matrix and R is upper

triangular.

The permuted QR factorization [q, r, p] = qr (a) forms the QR factorization

such that the diagonal entries of r are decreasing in magnitude order. For

example, given the matrix a = [1, 2; 3, 4],

[q, r, pi] = qr(a)

returns

q =

-0.44721 -0.89443

-0.89443 0.44721

r =

-4.47214 -3.13050

0.00000 0.44721

p =

Chapter 17: Linear Algebra 147

0 1

1 0

The permuted qr factorization [q, r, p] = qr (a) factorization allows the con-

struction of an orthogonal basis of span (a).

Loadable Functions = schur (a)

Loadable Function[u, s] = schur (a, opt)

The Schur decomposition is used to compute eigenvalues of a square matrix,

and has applications in the solution of algebraic Riccati equations in control

(see are and dare). schur always returns S = U

T

AU where U is a unitary

matrix (U

T

U is identity) and S is upper triangular. The eigenvalues of A

(and S) are the diagonal elements of S If the matrix A is real, then the real

Schur decomposition is computed, in which the matrix U is orthogonal and

S is block upper triangular with blocks of size at most 2� 2 blocks along the

diagonal. The diagonal elements of S (or the eigenvalues of the 2� 2 blocks,

when appropriate) are the eigenvalues of A and S.

The eigenvalues are optionally ordered along the diagonal according to the value

of opt. opt = "a" indicates that all eigenvalues with negative real parts should

be moved to the leading block of S (used in are), opt = "d" indicates that all

eigenvalues with magnitude less than one should be moved to the leading block

of S (used in dare), and opt = "u", the default, indicates that no ordering

of eigenvalues should occur. The leading k columns of U always span the

A-invariant subspace corresponding to the k leading eigenvalues of S.

Loadable Functions = svd (a)

Loadable Function[u, s, v] = svd (a)

Compute the singular value decomposition of a

A = U�V

H

The function svd normally returns the vector of singular values. If asked for

three return values, it computes U , S, and V . For example,

svd (hilb (3))

returns

ans =

1.4083189

0.1223271

0.0026873

and

[u, s, v] = svd (hilb (3))

returns

u =

-0.82704 0.54745 0.12766

148 GNU Octave

-0.45986 -0.52829 -0.71375

-0.32330 -0.64901 0.68867

s =

1.40832 0.00000 0.00000

0.00000 0.12233 0.00000

0.00000 0.00000 0.00269

v =

-0.82704 0.54745 0.12766

-0.45986 -0.52829 -0.71375

-0.32330 -0.64901 0.68867

If given a second argument, svd returns an economy-sized decomposition, elim-

inating the unnecessary rows or columns of u or v.

17.3 Functions of a Matrix

Loadable Functionexpm (a)

Return the exponential of a matrix, de�ned as the in�nite Taylor series

exp(A) = I + A+

A

2

2!

+

A

3

3!

+ � � �

The Taylor series is not the way to compute the matrix exponential; see Moler

and Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Ma-

trix, SIAM Review, 1978. This routine uses Ward's diagonal Pad�e approxi-

mation method with three step preconditioning (SIAM Journal on Numerical

Analysis, 1977). Diagonal Pad�e approximations are rational polynomials of

matrices D

q

(a)

�1

N

q

(a) whose Taylor series matches the �rst 2q + 1 terms

of the Taylor series above; direct evaluation of the Taylor series (with the same

preconditioning steps) may be desirable in lieu of the Pad�e approximation

when D

q

(a) is ill-conditioned.

Loadable Functionlogm (a)

Compute the matrix logarithm of the square matrix a. Note that this is cur-

rently implemented in terms of an eigenvalue expansion and needs to be im-

proved to be more robust.

Loadable Functionsqrtm (a)

Compute the matrix square root of the square matrix a. Note that this is

currently implemented in terms of an eigenvalue expansion and needs to be

improved to be more robust.

Function Filekron (a, b)

Form the kronecker product of two matrices, de�ned block by block as

Chapter 17: Linear Algebra 149

x = [a(i, j) b]

For example,

kron (1:4, ones (3, 1))

)

1 2 3 4

1 2 3 4

1 2 3 4

Function File[aa, bb, q, z] = qzhess (a, b)

Compute the Hessenberg-triangular decomposition of the matrix pencil (a, b),

returning aa = q * a * z, bb = q * b * z, with q and z orthogonal. For example,

[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])

)

aa = [-3.02244, -4.41741; 0.92998, 0.69749]

)

bb = [-8.60233, -9.99730; 0.00000, -0.23250]

)

q = [-0.58124, -0.81373; -0.81373, 0.58124]

)

z = [1, 0; 0, 1]

The Hessenberg-triangular decomposition is the �rst step in Moler and Stew-

art's QZ decomposition algorithm.

Algorithm taken from Golub and Van Loan,Matrix Computations, 2nd edition.

Loadable Functionqzval (a, b)

Compute generalized eigenvalues of the matrix pencil a� �b.

The arguments a and b must be real matrices.

Loadable Functionx = syl (a, b, c)

Solve the Sylvester equation

AX +XB + C = 0

using standard Lapack subroutines. For example,

syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])

)

[-0.50000, -0.66667; -0.66667, -0.50000]

150 GNU Octave

Chapter 18: Nonlinear Equations 151

18 Nonlinear Equations

Octave can solve sets of nonlinear equations of the form

f(x) = 0

using the function fsolve, which is based on the Minpack subroutine hybrd.

Loadable Function[x, info] = fsolve (fcn, x0)

Given fcn, the name of a function of the form f (x) and an initial starting point

x0, fsolve solves the set of equations such that f(x) == 0.

Loadable Functionfsolve options (opt, val)

When called with two arguments, this function allows you set options param-

eters for the function fsolve. Given one argument, fsolve_options returns

the value of the corresponding option. If no arguments are supplied, the names

of all the available options and their current values are displayed.

Here is a complete example. To solve the set of equations

�2x

2

+ 3xy + 4 sin(y)� 6 = 0

3x

2

� 2xy

2

+ 3 cos(x) + 4 = 0

you �rst need to write a function to compute the value of the given function. For example:

function y = f (x)

y(1) = -2*x(1)^2 + 3*x(1)*x(2) + 4*sin(x(2)) - 6;

y(2) = 3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;

endfunction

Then, call fsolve with a speci�ed initial condition to �nd the roots of the system of

equations. For example, given the function f de�ned above,

[x, info] = fsolve ("f", [1; 2])

results in the solution

x =

0.57983

2.54621

info = 1

A value of info = 1 indicates that the solution has converged.

The function perrormay be used to print English messages corresponding to the numeric

error codes. For example,

perror ("fsolve", 1)

a

solution converged to requested tolerance

152 GNU Octave

Chapter 19: Quadrature 153

19 Quadrature

19.1 Functions of One Variable

Loadable Function[v, ier, nfun, err] = quad (f, a, b, tol, sing)

Integrate a nonlinear function of one variable using Quadpack. The �rst argu-

ment is the name of the function to call to compute the value of the integrand.

It must have the form

y = f (x)

where y and x are scalars.

The second and third arguments are limits of integration. Either or both may

be in�nite.

The optional argument tol is a vector that speci�es the desired accuracy of the

result. The �rst element of the vector is the desired absolute tolerance, and

the second element is the desired relative tolerance. To choose a relative test

only, set the absolute tolerance to zero. To choose an absolute test only, set the

relative tolerance to zero.

The optional argument sing is a vector of values at which the integrand is known

to be singular.

The result of the integration is returned in v and ier contains an integer error

code (0 indicates a successful integration). The value of nfun indicates how

many function evaluations were required, and err contains an estimate of the

error in the solution.

Loadable Functionquad options (opt, val)

When called with two arguments, this function allows you set options param-

eters for the function quad. Given one argument, quad_options returns the

value of the corresponding option. If no arguments are supplied, the names of

all the available options and their current values are displayed.

Here is an example of using quad to integrate the function

f(x) = x sin(1=x)

q

j1� xj

from x = 0 to x = 3.

This is a fairly di�cult integration (plot the function over the range of integration to see

why).

The �rst step is to de�ne the function:

function y = f (x)

y = x .* sin (1 ./ x) .* sqrt (abs (1 - x));

endfunction

Note the use of the `dot' forms of the operators. This is not necessary for the call to

quad, but it makes it much easier to generate a set of points for plotting (because it makes

it possible to call the function with a vector argument to produce a vector result).

Then we simply call quad:

154 GNU Octave

[v, ier, nfun, err] = quad ("f", 0, 3)

)

1.9819

)

1

)

5061

)

1.1522e-07

Although quad returns a nonzero value for ier, the result is reasonably accurate (to see

why, examine what happens to the result if you move the lower bound to 0.1, then 0.01,

then 0.001, etc.).

19.2 Orthogonal Collocation

Loadable Function[r, A, B, q] = colloc (n, "left", "right")

Compute derivative and integral weight matrices for orthogonal collocation us-

ing the subroutines given in J. Villadsen and M. L. Michelsen, Solution of

Di�erential Equation Models by Polynomial Approximation.

Here is an example of using colloc to generate weight matrices for solving the second

order di�erential equation u

0

� �u

00

= 0 with the boundary conditions u(0) = 0 and

u(1) = 1.

First, we can generate the weight matrices for n points (including the endpoints of the

interval), and incorporate the boundary conditions in the right hand side (for a speci�c

value of �).

n = 7;

alpha = 0.1;

[r, a, b] = colloc (n-2, "left", "right");

at = a(2:n-1,2:n-1);

bt = b(2:n-1,2:n-1);

rhs = alpha * b(2:n-1,n) - a(2:n-1,n);

Then the solution at the roots r is

u = [0; (at - alpha * bt) \ rhs; 1]

)

[0.00; 0.004; 0.01 0.00; 0.12; 0.62; 1.00]

Chapter 20: Di�erential Equations 155

20 Di�erential Equations

Octave has two built-in functions for solving di�erential equations. Both are based on

reliable ODE solvers written in Fortran.

20.1 Ordinary Di�erential Equations

The function lsode can be used Solve ODEs of the form

dx

dt

= f(x; t)

using Hindmarsh's ODE solver Lsode.

Loadable Functionlsode (fcn, x0, t, t crit)

Return a matrix of x as a function of t, given the initial state of the system x0.

Each row in the result matrix corresponds to one of the elements in the vector

t. The �rst element of t corresponds to the initial state x0, so that the �rst row

of the output is x0.

The �rst argument, fcn, is a string that names the function to call to compute

the vector of right hand sides for the set of equations. It must have the form

xdot = f (x, t)

where xdot and x are vectors and t is a scalar.

The fourth argument is optional, and may be used to specify a set of times that

the ODE solver should not integrate past. It is useful for avoiding di�culties

with singularities and points where there is a discontinuity in the derivative.

Here is an example of solving a set of three di�erential equations using lsode. Given

the function

function xdot = f (x, t)

xdot = zeros (3,1);

xdot(1) = 77.27 * (x(2) - x(1)*x(2) + x(1) \

- 8.375e-06*x(1)^2);

xdot(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27;

xdot(3) = 0.161*(x(1) - x(3));

endfunction

and the initial condition x0 = [4; 1.1; 4], the set of equations can be integrated using

the command

t = linspace (0, 500, 1000);

y = lsode ("f", x0, t);

If you try this, you will see that the value of the result changes dramatically between t

= 0 and 5, and again around t = 305. A more e�cient set of output points might be

t = [0, logspace (-1, log10(303), 150), \

logspace (log10(304), log10(500), 150)];

156 GNU Octave

Loadable Functionlsode options (opt, val)

When called with two arguments, this function allows you set options parame-

ters for the function lsode. Given one argument, lsode_options returns the

value of the corresponding option. If no arguments are supplied, the names of

all the available options and their current values are displayed.

See Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, in

Scienti�c Computing, R. S. Stepleman, editor, (1983) for more information about the inner

workings of lsode.

20.2 Di�erential-Algebraic Equations

The function dassl can be used Solve DAEs of the form

0 = f(_x; x; t); x(t = 0) = x

0

; _x(t = 0) = _x

0

using Petzold's DAE solver Dassl.

Loadable Function[x, xdot] = dassl (fcn, x0, xdot0, t, t crit)

Return a matrix of states and their �rst derivatives with respect to t. Each row

in the result matrices correspond to one of the elements in the vector t. The

�rst element of t corresponds to the initial state x0 and derivative xdot0, so

that the �rst row of the output x is x0 and the �rst row of the output xdot is

xdot0.

The �rst argument, fcn, is a string that names the function to call to compute

the vector of residuals for the set of equations. It must have the form

res = f (x, xdot, t)

where x, xdot, and res are vectors, and t is a scalar.

The second and third arguments to dassl specify the initial condition of the

states and their derivatives, and the fourth argument speci�es a vector of output

times at which the solution is desired, including the time corresponding to the

initial condition.

The set of initial states and derivatives are not strictly required to be consistent.

In practice, however, Dassl is not very good at determining a consistent set

for you, so it is best if you ensure that the initial values result in the function

evaluating to zero.

The �fth argument is optional, and may be used to specify a set of times that

the DAE solver should not integrate past. It is useful for avoiding di�culties

with singularities and points where there is a discontinuity in the derivative.

Loadable Functiondassl options (opt, val)

When called with two arguments, this function allows you set options parame-

ters for the function lsode. Given one argument, dassl_options returns the

value of the corresponding option. If no arguments are supplied, the names of

all the available options and their current values are displayed.

See K. E. Brenan, et al., Numerical Solution of Initial-Value Problems in Di�erential-

Algebraic Equations, North-Holland (1989) for more information about the implementation

of Dassl.

Chapter 21: Optimization 157

21 Optimization

21.1 Quadratic Programming

21.2 Nonlinear Programming

21.3 Linear Least Squares

Function File[beta, v, r] = gls (y, x, o)

Generalized least squares estimation for the multivariate model y = xb + e

with �e = 0 and cov(vec(e)) = (s

2

)o, where y is a t � p matrix, x is a t � k

matrix, b is a k � p matrix, e is a t� p matrix, and o is a tp � tp matrix.

Each row of Y and X is an observation and each column a variable.

The return values beta, v, and r are de�ned as follows.

beta The GLS estimator for b.

v The GLS estimator for s^2.

r The matrix of GLS residuals, r = y - x * beta.

Function File[beta, sigma, r] = ols (y, x)

Ordinary least squares estimation for the multivariate model y = xb+ e with

�e = 0, and cov(vec(e)) = kron (s; I) where y is a t � p matrix, x is a t � k

matrix, b is a k � p matrix, and e is a t � p matrix.

Each row of y and x is an observation and each column a variable.

The return values beta, sigma, and r are de�ned as follows.

beta The OLS estimator for b, beta = pinv (x) * y , where pinv (x)

denotes the pseudoinverse of x.

sigma The OLS estimator for the matrix s,

sigma = (y-x*beta)' * (y-x*beta) / (t-rank(x))

r The matrix of OLS residuals, r = y - x * beta.

158 GNU Octave

Chapter 22: Statistics 159

22 Statistics

I hope that someday Octave will include more statistics functions. If you would like to

help improve Octave in this area, please contact hbug-octave@bevo.che.wisc.edui.

Function Filemean (x)

If x is a vector, compute the mean of the elements of x

mean(x) = �x =

1

N

N

X

i=1

x

i

If x is a matrix, compute the mean for each column and return them in a row

vector.

Function Filemedian (x)

If x is a vector, compute the median value of the elements of x.

median(x) =

�

x(dN=2e); N odd;

(x(N=2)+ x(N=2 + 1))=2; N even.

If x is a matrix, compute the median value for each column and return them

in a row vector.

Function Filestd (x)

If x is a vector, compute the standard deviation of the elements of x.

std(x) = �(x) =

s

P

N

i=1

(x

i

� �x)

N � 1

If x is a matrix, compute the standard deviation for each column and return

them in a row vector.

Function Filecov (x, y)

If each row of x and y is an observation and each column is a variable, the

(i,j)-th entry of cov (x, y) is the covariance between the i-th variable in x and

the j-th variable in y. If called with one argument, compute cov (x, x).

Function Filecorrcoef (x, y)

If each row of x and y is an observation and each column is a variable, the

(i,j)-th entry of corrcoef (x, y) is the correlation between the i-th variable in

x and the j-th variable in y. If called with one argument, compute corrcoef

(x, x).

Function Filekurtosis (x)

If x is a vector of length N, return the kurtosis

kurtosis(x) =

1

N�(x)

4

N

X

i=1

(x

i

� �x)

4

� 3

of x. If x is a matrix, return the row vector containing the kurtosis of each

column.

160 GNU Octave

Function Filemahalanobis (x, y)

Return the Mahalanobis' D-square distance between the multivariate samples

x and y, which must have the same number of components (columns), but may

have a di�erent number of observations (rows).

Function Fileskewness (x)

If x is a vector of length N, return the skewness

skewness(x) =

1

N�(x)

3

N

X

i=1

(x

i

� �x)

3

of x. If x is a matrix, return the row vector containing the skewness of each

column.

Chapter 23: Sets 161

23 Sets

Octave has a limited set of functions for managing sets of data, where a set is de�ned as

a collection unique elements.

Function Filecreate set (x)

Return a row vector containing the unique values in x, sorted in ascending

order. For example,

create_set ([1, 2; 3, 4; 4, 2])

)

[1, 2, 3, 4]

Function Fileunion (x, y)

Return the set of elements that are in either of the sets x and y. For example,

union ([1, 2, 4], [2, 3, 5])

)

[1, 2, 3, 4, 5]

Function Fileintersection (x, y)

Return the set of elements that are in both sets x and y. For example,

intersection ([1, 2, 3], [2, 3, 5])

)

[2, 3]

Function Filecomplement (x, y)

Return the elements of set y that are not in set x. For example,

complement ([1, 2, 3], [2, 3, 5])

)

5

162 GNU Octave

Chapter 24: Polynomial Manipulations 163

24 Polynomial Manipulations

In Octave, a polynomial is represented by its coe�cients (arranged in descending order).

For example, a vector c of length N+1 corresponds to the following polynomial of order

N

p(x) = c

1

x

N

+ :::+ c

N

x+ c

N+1

:

Function Filecompan (c)

Compute the companion matrix corresponding to polynomial coe�cient vector

c.

The companion matrix is

A =

2

6

6

6

6

6

4

�c

2

=c

1

�c

3

=c

1

� � � �c

N

=c

1

�c

N+1

=c

1

1 0 � � � 0 0

0 1 � � � 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � 1 0

3

7

7

7

7

7

5

:

The eigenvalues of the companion matrix are equal to the roots of the polyno-

mial.

Function Fileconv (a, b)

Convolve two vectors.

y = conv (a, b) returns a vector of length equal to length (a) + length (b)

- 1. If a and b are polynomial coe�cient vectors, conv returns the coe�cients

of the product polynomial.

Function Filedeconv (y, a)

Deconvolve two vectors.

[b, r] = deconv (y, a) solves for b and r such that y = conv (a, b) + r.

If y and a are polynomial coe�cient vectors, b will contain the coe�cients of

the polynomial quotient and r will be a remander polynomial of lowest order.

Function Filepoly (a)

If a is a square N-by-N matrix, poly (a) is the row vector of the coe�cients of

det (z * eye (N) - a), the characteristic polynomial of a. If x is a vector, poly

(x) is a vector of coe�cients of the polynomial whose roots are the elements of

x.

Function Filepolyderiv (c)

Return the coe�cients of the derivative of the polynomial whose coe�cients are

given by vector c.

Function Filepoly�t (n, y, n)

Return the coe�cients of a polynomial p(x) of degree n that minimizes

N

X

i=1

(p(x

i

)� y

i

)

2

to best �t the data in the least squares sense.

164 GNU Octave

Function Filepolyinteg (c)

Return the coe�cients of the integral the polynomial whose coe�cients are

represented by the vector c.

The constant of integration is set to zero.

Function Filepolyreduce (c)

Reduces a polynomial coe�cient vector to a minimum number of terms by

stripping o� any leading zeros.

Function Filepolyval (c, x)

Evaluate a polynomial.

polyval (c, x) will evaluate the polynomial at the speci�ed value of x.

If x is a vector or matrix, the polynomial is evaluated at each of the elements

of x.

Function Filepolyvalm (c, x)

Evaluate a polynomial in the matrix sense.

polyvalm (c, x) will evaluate the polynomial in the matrix sense, i.e. matrix

multiplication is used instead of element by element multiplication as is used

in polyval.

The argument x must be a square matrix.

Function Fileresidue (b, a, tol)

If b and a are vectors of polynomial coe�cients, then residue calculates the

partial fraction expansion corresponding to the ratio of the two polynomials.

The function residue returns r, p, k, and e, where the vector r contains the

residue terms, p contains the pole values, k contains the coe�cients of a direct

polynomial term (if it exists) and e is a vector containing the powers of the

denominators in the partial fraction terms.

Assuming b and a represent polynomials P (s) and Q(s) we have:

P (s)

Q(s)

=

M

X

m=1

r

m

(s� p

m

)

e

m

+

N

X

i=1

k

i

s

N�i

:

where M is the number of poles (the length of the r, p, and e vectors) and N

is the length of the k vector.

The argument tol is optional, and if not speci�ed, a default value of 0.001 is

assumed. The tolerance value is used to determine whether poles with small

imaginary components are declared real. It is also used to determine if two

poles are distinct. If the ratio of the imaginary part of a pole to the real part

is less than tol, the imaginary part is discarded. If two poles are farther apart

than tol they are distinct. For example,

Chapter 24: Polynomial Manipulations 165

b = [1, 1, 1];

a = [1, -5, 8, -4];

[r, p, k, e] = residue (b, a);

)

r = [-2, 7, 3]

)

p = [2, 2, 1]

)

k = [](0x0)

)

e = [1, 2, 1]

which implies the following partial fraction expansion

s

2

+ s+ 1

s

3

� 5s

2

+ 8s� 4

=

�2

s � 2

+

7

(s� 2)

2

+

3

s� 1

Function Fileroots (v)

For a vector v with N components, return the roots of the polynomial

v

1

z

N�1

+ � � �+ v

N�1

z + v

N

:

166 GNU Octave

Chapter 25: Control Theory 167

25 Control Theory

Most of the functions described in this chapter were contributed by A. Scottedward Hodel

hA.S.Hodel@eng.auburn.edui and R. Bruce Tenison hBruce.Tenison@eng.auburn.edui.

They have also written a larger collection of functions for solving linear control problems.

It is currently being updated for Octave version 2, with snapshots of the sources available

from `ftp://ftp.eng.auburn.edu/pub/hodel'.

Function File[n, m, p] = abcddim (a, b, c, d)

Check for compatibility of the dimensions of the matrices de�ning the linear

system [A;B;C;D] corresponding to

dx

dt

= Ax+ Bu

y = Cx+Du

or a similar discrete-time system.

If the matrices are compatibly dimensioned, then abcddim returns

n The number of system states.

m The number of system inputs.

p The number of system outputs.

Otherwise abcddim returns n = m = p = �1.

Function Fileare (a, b, c, opt)

Return the solution, x, of the algebraic Riccati equation

A

T

X +XA�XBX + C = 0

for identically dimensioned square matrices a, b, and c. If b is not square, are

attempts to use b*b' instead. If c is not square, are attempts to use c'*c)

instead.

To form the solution, Laub's Schur method (IEEE Transactions on Automatic

Control, 1979) is applied to the appropriate Hamiltonian matrix.

The optional argument opt is passed to the eigenvalue balancing routine. If it

is omitted, a value of "B" is assumed.

Function Filec2d (a, b, t)

Convert the continuous time system described by:

dx

dt

= Ax+ Bu

into a discrete time equivalent model

x

k+1

= A

d

x

k

+B

d

u

k

via the matrix exponential assuming a zero-order hold on the input and sample

time t.

168 GNU Octave

Function Filedare (a, b, c, r, opt)

Return the solution, x of the discrete-time algebraic Riccati equation

A

T

XA�X + A

T

XB(R+B

T

XB)

�1

B

T

XA+ C = 0

for matrices with dimensions:

a n by n.

b n by m.

c n by n, symmetric positive semide�nite.

r m by m, symmetric positive de�nite (invertible).

If c is not square, then the function attempts to use c'*c instead.

To form the solution, Laub's Schur method (IEEE Transactions on Automatic

Control, 1979) is applied to the appropriate symplectic matrix.

See also Ran and Rodman, Stable Hermitian Solutions of Discrete Algebraic

Riccati Equations, Mathematics of Control, Signals and Systems, Volume 5,

Number 2 (1992).

The optional argument opt is passed to the eigenvalue balancing routine. If it

is omitted, a value of "B" is assumed.

Function Filedgram (a, b)

Return the discrete controllability or observability gramian for the discrete time

system described by

x

k+1

= Ax

k

+ Bu

k

y

k

= Cx

k

+Du

k

For example, dgram (a, b) returns the discrete controllability gramian and

dgram (a', c') returns the observability gramian.

Function File[l, m, p, e] = dlqe (a, g, c, sigw, sigv, z)

Construct the linear quadratic estimator (Kalman �lter) for the discrete time

system

x

k+1

= Ax

k

+ Bu

k

+ Gw

k

y

k

= Cx

k

+Du

k

+ w

k

where w, v are zero-mean gaussian noise processes with respective intensities

sigw = cov (w, w) and sigv = cov (v, v).

If speci�ed, z is cov (w, v). Otherwise cov (w, v) = 0.

The observer structure is

z

k+1

= Az

k

+ Bu

k

+ k(y

k

� Cz

k

�Du

k

)

The following values are returned:

l The observer gain, (A�ALC). is stable.

m The Riccati equation solution.

p The estimate error covariance after the measurement update.

e The closed loop poles of (A� ALC).

Chapter 25: Control Theory 169

Function File[k, p, e] = dlqr (a, b, q, r, z)

Construct the linear quadratic regulator for the discrete time system

x

k+1

= Ax

k

+ Bu

k

to minimize the cost functional

J =

X

x

T

Qx+ u

T

Ru

z omitted or

J =

X

x

T

Qx+ u

T

Ru+ 2x

T

Zu

z included.

The following values are returned:

k The state feedback gain, (A�BK) is stable.

p The solution of algebraic Riccati equation.

e The closed loop poles of (A� BK).

Function Filedlyap (a, b)

Solve the discrete-time Lyapunov equation AXA

T

� X + B = 0 for square

matrices a, b. If b is not square, then the function attempts to solve either

AXA

T

�X + BB

T

= 0 or A

T

XA�X + B

T

B = 0, whichever is appropriate.

Uses Schur decomposition method as in Kitagawa An Algorithm for Solving

the Matrix Equation X = FXF

0

+ S, International Journal of Control, Vol-

ume 25, Number 5, pages 745{753 (1977); column-by-column solution method

as suggested in Hammerling, Numerical Solution of the Stable, Non-Negative

De�nite Lyapunov Equation, IMA Journal of Numerical Analysis, Volume 2,

pages 303{323 (1982).

Function Fileis controllable (a, b, tol)

Return 1 if the pair (a, b) is controllable. Otherwise, return 0.

The optional argument tol is a roundo� parameter. If it is omitted, a value of

2*eps is used.

Currently, is_controllable just constructs the controllability matrix and

checks rank.

Function Fileis observable (a, c, tol)

Return 1 if the pair (a, c) is observable. Otherwise, return 0.

The optional argument tol is a roundo� parameter. If it is omitted, a value of

2*eps is used.

Function File[k, p, e] = lqe (a, g, c, sigw, sigv, z)

Construct the linear quadratic estimator (Kalman �lter) for the continuous time

system

dx

dt

= Ax+ Bu

y = Cx+Du

where w and v are zero-mean gaussian noise processes with respective intensities

170 GNU Octave

sigw = cov (w, w)

sigv = cov (v, v)

The optional argument z is the cross-covariance cov (w, v). If it is omitted,

cov (w, v) = 0 is assumed.

Observer structure is dz/dt = A z + B u + k (y - C z - D u)

The following values are returned:

k The observer gain, (A�KC) is stable.

p The solution of algebraic Riccati equation.

e The vector of closed loop poles of (A�KC).

Function File[k, p, e] = lqr (a, b, q, r, z)

construct the linear quadratic regulator for the continuous time system

dx

dt

= Ax+ Bu

to minimize the cost functional

J =

Z

1

0

x

T

Qx+ u

T

Ru

z omitted or

J =

Z

1

0

x

T

Qx+ u

T

Ru+ 2x

T

Zu

z included.

The following values are returned:

k The state feedback gain, (A�BK) is stable.

p The stabilizing solution of appropriate algebraic Riccati equation.

e The vector of the closed loop poles of (A�BK).

Function Filelyap (a, b, c)

Solve the Lyapunov (or Sylvester) equation via the Bartels-Stewart algorithm

(Communications of the ACM, 1972).

If a, b, and c are speci�ed, then lyap returns the solution of the Sylvester

equation

AX +XB + C = 0

If only (a, b) are speci�ed, then lyap returns the solution of the Lyapunov

equation

A

T

X +XA+ B = 0

If b is not square, then lyap returns the solution of either

A

T

X +XA+B

T

B = 0

or

AX +XA

T

+BB

T

= 0

whichever is appropriate.

Chapter 25: Control Theory 171

Function Filetzero (a, b, c, d, opt)

Compute the transmission zeros of [A;B;C;D].

The optional argument opt is passed to the eigenvalue balancing routine. If it

is omitted, a value of "B" is assumed.

172 GNU Octave

Chapter 26: Signal Processing 173

26 Signal Processing

I hope that someday Octave will include more signal processing functions. If you would

like to help improve Octave in this area, please contact hbug-octave@bevo.che.wisc.edui.

Function Filedetrend (x, p)

If x is a vector, detrend (x, p) removes the best �t of a polynomial of order

p from the data x.

If x is a matrix, detrend (x, p) does the same for each column in x.

The second argument is optional. If it is not speci�ed, a value of 1 is assumed.

This corresponds to removing a linear trend.

Function�t (a, n)

Compute the FFT of a using subroutines from Fftpack. If a is a matrix, fft

computes the FFT for each column of a.

If called with two arguments, n is expected to be an integer specifying the

number of elements of a to use. If a is a matrix, n speci�es the number of rows

of a to use. If n is larger than the size of a, a is resized and padded with zeros.

Loadable Functioni�t (a, n)

Compute the inverse FFT of a using subroutines from Fftpack. If a is a

matrix, fft computes the inverse FFT for each column of a.

If called with two arguments, n is expected to be an integer specifying the

number of elements of a to use. If a is a matrix, n speci�es the number of rows

of a to use. If n is larger than the size of a, a is resized and padded with zeros.

Loadable Function�t2 (a, n, m)

Compute the two dimensional FFT of a.

The optional arguments n and m may be used specify the number of rows and

columns of a to use. If either of these is larger than the size of a, a is resized

and padded with zeros.

Loadable Functioni�t2 (a, n, m)

Compute the two dimensional inverse FFT of a.

The optional arguments n and m may be used specify the number of rows and

columns of a to use. If either of these is larger than the size of a, a is resized

and padded with zeros.

Built-in Function�tconv (a, b, n)

Return the convolution of the vectors a and b, as a vector with length equal

to the length (a) + length (b) - 1. If a and b are the coe�cient vectors of

two polynomials, the returned value is the coe�cient vector of the product

polynomial.

The computation uses the FFT by calling the function fftfilt. If the optional

argument n is speci�ed, an N-point FFT is used.

174 GNU Octave

Function File�t�lt (b, x, n)

With two arguments, fftfilt �lters x with the FIR �lter b using the FFT.

Given the optional third argument, n, fftfilt uses the overlap-add method to

�lter x with b using an N-point FFT.

Loadable Functiony = �lter (b, a, x)

Return the solution to the following linear, time-invariant di�erence equation:

N

X

k=0

a

k+1

y

n�k

=

M

X

k=0

b

k+1

x

n�k

; 1 � n � P

where a 2 <

N�1

, b 2 <

M�1

, and x 2 <

P

. An equivalent form of this equation

is:

y

n

= �

N

X

k=1

c

k+1

y

n�k

+

M

X

k=0

d

k+1

x

n�k

; 1 � n � P

where c = a=a

1

and d = b=a

1

.

In terms of the z-transform, y is the result of passing the discrete- time signal

x through a system characterized by the following rational system function:

H(z) =

M

X

k=0

d

k+1

z

�k

1 +

N

X

k+1

c

k+1

z

�k

Loadable Function[y, sf] = �lter (b, a, x, si)

This is the same as the filter function described above, except that si is taken

as the initial state of the system and the �nal state is returned as sf. The state

vector is a column vector whose length is equal to the length of the longest

coe�cient vector minus one. If si is not set, the initial state vector is set to all

zeros.

Function File[h, w] = freqz (b, a, n, "whole")

Return the complex frequency response h of the rational IIR �lter whose nu-

merator and denominator coe�cients are b and a, respectively. The response

is evaluated at n angular frequencies between 0 and 2�.

The output value w is a vector of the frequencies.

If the fourth argument is omitted, the response is evaluated at frequencies

between 0 and �.

If n is omitted, a value of 512 is assumed.

If a is omitted, the denominator is assumed to be 1 (this corresponds to a simple

FIR �lter).

For fastest computation, n should factor into a small number of small primes.

Function Filesinc (x)

Return sin(�x)=(�x).

Chapter 27: Image Processing 175

27 Image Processing

Octave can display images with the X Window System using the xloadimage program.

You do not need to be running X in order to manipulate images, however, so some of these

functions may be useful even if you are not able to view the results.

Loading images only works with Octave's image format (a �le with a matrix containing

the image data, and a matrix containing the colormap). Contributions of robust, well-

written functions to read other image formats are welcome. If you can provide them, or

would like to improve Octave's image processing capabilities in other ways, please contact

hbug-octave@bevo.che.wisc.edui.

Function Filecolormap (map)

Function Filecolormap ("default")

Set the current colormap.

colormap (map) sets the current colormap to map. The color map should

be an n row by 3 column matrix. The columns contain red, green, and blue

intensities respectively. All entries should be between 0 and 1 inclusive. The

new colormap is returned.

colormap ("default") restores the default colormap (a gray scale colormap

with 64 entries). The default colormap is returned.

With no arguments, colormap returns the current color map.

Function Filegray (n)

Return a gray colormap with n entries corresponding to values from 0 to n.

The argument n should be a scalar. If it is omitted, 64 is assumed.

Function File[img, map] = gray2ind ()

Convert a gray scale intensity image to an Octave indexed image.

Function Fileimage (x, zoom)

Display a matrix as a color image. The elements of x are indices into the current

colormap and should have values between 1 and the length of the colormap. If

zoom is omitted, a value of 4 is assumed.

Function Fileimagesc (x, zoom)

Display a scaled version of the matrix x as a color image. The matrix is scaled

so that its entries are indices into the current colormap. The scaled matrix is

returned. If zoom is omitted, a value of 4 is assumed.

Function Fileimshow (x, map)

Function Fileimshow (x, n)

Function Fileimshow (i, n)

Function Fileimshow (r, g, b)

Display images.

imshow (x) displays an indexed image using the current colormap.

imshow (x, map) displays an indexed image using the speci�ed colormap.

imshow (i, n) displays a gray scale intensity image.

imshow (r, g, b) displays an RGB image.

176 GNU Octave

Function Fileind2gray (x, map)

Convert an Octave indexed image to a gray scale intensity image. If map is

omitted, the current colormap is used to determine the intensities.

Function File[r, g, b] = ind2rgb (x, map)

Convert an indexed image to red, green, and blue color components. If map is

omitted, the current colormap is used for the conversion.

Function File[x, map] = loadimage (�le)

Load an image �le and it's associated color map from the speci�ed �le. The

image must be stored in Octave's image format.

Function Filergb2ntsc (rgb)

Image format conversion.

Function Filentsc2rgb (yiq)

Image format conversion.

Function Fileocean (n)

Create color colormap. The argument n should be a scalar. If it is omitted, 64

is assumed.

Function File[x, map] = rgb2ind (r, g, b)

Convert and RGB image to an Octave indexed image.

Function Filesaveimage (�le, x, fmt, map)

Save the matrix x to �le in image format fmt. Valid values for fmt are

"img" Octave's image format. The current colormap is also saved in the

�le.

"ppm" Portable pixmap format.

"ps" PostScript format. Note that images saved in PostScript format

can not be read back into Octave with loadimage.

If the fourth argument is supplied, the speci�ed colormap will also be saved

along with the image.

Note: if the colormap contains only two entries and these entries are black and

white, the bitmap ppm and PostScript formats are used. If the image is a

gray scale image (the entries within each row of the colormap are equal) the

gray scale ppm and PostScript image formats are used, otherwise the full color

formats are used.

Built-in VariableIMAGEPATH

A colon separated list of directories in which to search for image �les.

Chapter 28: Audio Processing 177

28 Audio Processing

Octave provides a few functions for dealing with audio data. An audio `sample' is a

single output value from an A/D converter, i.e., a small integer number (usually 8 or 16

bits), and audio data is just a series of such samples. It can be characterized by three

parameters: the sampling rate (measured in samples per second or Hz, e.g. 8000 or 44100),

the number of bits per sample (e.g. 8 or 16), and the number of channels (1 for mono, 2

for stereo, etc.).

There are many di�erent formats for representing such data. Currently, only the two

most popular, linear encoding and mu-law encoding, are supported by Octave. There is an

excellent FAQ on audio formats by Guido van Rossum <guido@cwi.nl> which can be found at

any FAQ ftp site, in particular in the directory `/pub/usenet/news.answers/audio-fmts'

of the archive site rtfm.mit.edu.

Octave simply treats audio data as vectors of samples (non-mono data are not supported

yet). It is assumed that audio �les using linear encoding have one of the extensions `lin'

or `raw', and that �les holding data in mu-law encoding end in `au', `mu', or `snd'.

Function Filelin2mu (x)

If the vector x represents mono audio data in 8- or 16-bit linear encoding,

lin2mu (x) is the corresponding mu-law encoding.

Function Filemu2lin (x, bps)

If the vector x represents mono audio data in mu-law encoding, mu2lin converts

it to linear encoding. The optional argument bps speci�es whether the input

data uses 8 bit per sample (default) or 16 bit.

Function Fileloadaudio (name, ext, bps)

Loads audio data from the �le `name.ext' into the vector x.

The extension ext determines how the data in the audio �le is interpreted; the

extensions `lin' (default) and `raw' correspond to linear, the extensions `au',

`mu', or `snd' to mu-law encoding.

The argument bps can be either 8 (default) or 16, and speci�es the number of

bits per sample used in the audio �le.

Function Filesaveaudio (name, x, ext, bps)

Saves a vector x of audio data to the �le `name.ext'. The optional parameters

ext and bps determine the encoding and the number of bits per sample used in

the audio �le (see loadaudio); defaults are `lin' and 8, respectively.

The following functions for audio I/O require special A/D hardware and operating system

support. It is assumed that audio data in linear encoding can be played and recorded by

reading from and writing to `/dev/dsp', and that similarly `/dev/audio' is used for mu-law

encoding. These �le names are system-dependent. Improvements so that these functions

will work without modi�cation on a wide variety of hardware are welcome.

Function Fileplayaudio (name, ext)

Function Fileplayaudio (x)

Plays the audio �le `name.ext' or the audio data stored in the vector x.

178 GNU Octave

Function Filerecord (sec, sampling rate)

Records sec seconds of audio input into the vector x. The default value for

sampling rate is 8000 samples per second, or 8kHz. The program waits until

the user types

h

RET

i

and then immediately starts to record.

Function Filesetaudio (type)

Function Filesetaudio (type, value)

Set or display various properties of your mixer hardware.

For example, if vol corresponds to the volume property, you can set it to 50

(percent) by setaudio ("vol", 50).

This is an simple experimental program to control the audio hardware set-

tings. It assumes that there is a mixer program which can be used as mixer

type value, and simply executes system ("mixer type value"). Future releases

might get rid of this assumption by using the fcntl interface.

Chapter 29: System Utilities 179

29 System Utilities

This chapter describes the functions that are available to allow you to get information

about what is happening outside of Octave, while it is still running, and use this information

in your program. For example, you can get information about environment variables, the

current time, and even start other programs from the Octave prompt.

29.1 Timing Utilities

Octave's core set of functions for manipulating time values are patterned after the cor-

responding functions from the standard C library. Several of these functions use a data

structure for time that includes the following elements:

usec Microseconds after the second (0-999999).

sec Seconds after the minute (0-61). This number can be 61 to account for leap

seconds.

min Minutes after the hour (0-59).

hour Hours since midnight (0-23).

mday Day of the month (1-31).

mon Months since January (0-11).

year Years since 1900.

wday Days since Sunday (0-6).

yday Days since January 1 (0-365).

isdst Daylight Savings Time ag.

zone Time zone.

In the descriptions of the following functions, this structure is referred to as a tm struct.

Loadable Functiontime ()

Return the current time as the number of seconds since the epoch. The epoch

is referenced to 00:00:00 CUT (Coordinated Universal Time) 1 Jan 1970. For

example, on Monday February 17, 1997 at 07:15:06 CUT, the value returned

by time was 856163706.

Function Filectime (t)

Convert a value returned from time (or any other nonnegative integer), to the

local time and return a string of the same form as asctime. The function ctime

(time) is equivalent to asctime (localtime (time)). For example,

ctime (time ())

)

"Mon Feb 17 01:15:06 1997"

Loadable Functiongmtime (t)

Given a value returned from time (or any nonnegative integer), return a time

structure corresponding to CUT. For example,

180 GNU Octave

gmtime (time ())

)

{

usec = 0

year = 97

mon = 1

mday = 17

sec = 6

zone = CST

min = 15

wday = 1

hour = 7

isdst = 0

yday = 47

}

Loadable Functionlocaltime (t)

Given a value returned from time (or any nonnegative integer), return a time

structure corresponding to the local time zone.

localtime (time ())

)

{

usec = 0

year = 97

mon = 1

mday = 17

sec = 6

zone = CST

min = 15

wday = 1

hour = 1

isdst = 0

yday = 47

}

Loadable Functionmktime (tm struct)

Convert a time structure corresponding to the local time to the number of

seconds since the epoch. For example,

mktime (localtime (time ())

)

856163706

Function Fileasctime (tm struct)

Convert a time structure to a string using the following �ve-�eld format: Thu

Mar 28 08:40:14 1996. For example,

asctime (localtime (time ())

)

"Mon Feb 17 01:15:06 1997\n"

This is equivalent to ctime (time ()).

Loadable Functionstrftime (tm struct)

Format a time structure in a exible way using `%' substitutions similar to those

in printf. Except where noted, substituted �elds have a �xed size; numeric

Chapter 29: System Utilities 181

�elds are padded if necessary. Padding is with zeros by default; for �elds that

display a single number, padding can be changed or inhibited by following the

`%' with one of the modi�ers described below. Unknown �eld speci�ers are

copied as normal characters. All other characters are copied to the output

without change. For example,

strftime ("%r (%Z) %A %e %B %Y", localtime (time ())

)

"01:15:06 AM (CST) Monday 17 February 1997"

Octave's strftime function supports a superset of the ANSI C �eld speci�ers.

Literal character �elds:

% % character.

n Newline character.

t Tab character.

Numeric modi�ers (a nonstandard extension):

- (dash) Do not pad the �eld.

_ (underscore)

Pad the �eld with spaces.

Time �elds:

%H Hour (00-23).

%I Hour (01-12).

%k Hour (0-23).

%l Hour (1-12).

%M Minute (00-59).

%p Locale's AM or PM.

%r Time, 12-hour (hh:mm:ss [AP]M).

%R Time, 24-hour (hh:mm).

%s Time in seconds since 00:00:00, Jan 1, 1970 (a nonstandard exten-

sion).

%S Second (00-61).

%T Time, 24-hour (hh:mm:ss).

%X Locale's time representation (%H:%M:%S).

%Z Time zone (EDT), or nothing if no time zone is determinable.

Date �elds:

%a Locale's abbreviated weekday name (Sun-Sat).

%A Locale's full weekday name, variable length (Sunday-Saturday).

%b Locale's abbreviated month name (Jan-Dec).

182 GNU Octave

%B Locale's full month name, variable length (January-December).

%c Locale's date and time (Sat Nov 04 12:02:33 EST 1989).

%C Century (00-99).

%d Day of month (01-31).

%e Day of month (1-31).

%D Date (mm/dd/yy).

%h Same as %b.

%j Day of year (001-366).

%m Month (01-12).

%U Week number of year with Sunday as �rst day of week (00-53).

%w Day of week (0-6).

%W Week number of year with Monday as �rst day of week (00-53).

%x Locale's date representation (mm/dd/yy).

%y Last two digits of year (00-99).

%Y Year (1970-).

Most of the remaining functions described in this section are not patterned after the

standard C library. Some are available for compatiblity with Matlab and others are

provided because they are useful.

Function Fileclock ()

Return a vector containing the current year, month (1-12), day (1-31), hour

(0-23), minute (0-59) and second (0-61). For example,

clock ()

)

[1993, 8, 20, 4, 56, 1]

The function clock is more accurate on systems that have the gettimeofday

function.

Function Filedate ()

Return the date as a character string in the form DD-MMM-YY. For example,

date ()

)

"20-Aug-93"

Function Fileetime (t1, t2)

Return the di�erence (in seconds) between two time values returned from clock.

For example:

t0 = clock ();

many computations later...

elapsed_time = etime (clock (), t0);

will set the variable elapsed_time to the number of seconds since the variable

t0 was set.

Chapter 29: System Utilities 183

Built-in Function[total, user, system] = cputime ();

Return the CPU time used by your Octave session. The �rst output is the total

time spent executing your process and is equal to the sum of second and third

outputs, which are the number of CPU seconds spent executing in user mode

and the number of CPU seconds spent executing in system mode, respectively.

If your system does not have a way to report CPU time usage, cputime returns

0 for each of its output values. Note that because Octave used some CPU time

to start, it is reasonable to check to see if cputime works by checking to see if

the total CPU time used is nonzero.

Function Fileis leap year (year)

Return 1 if the given year is a leap year and 0 otherwise. If no arguments are

provided, is_leap_year will use the current year. For example,

is_leap_year (2000)

)

1

Function Filetic ()

Function Filetoc ()

These functions set and check a wall-clock timer. For example,

tic ();

many computations later...

elapsed_time = toc ();

will set the variable elapsed_time to the number of seconds since the most

recent call to the function tic.

If you are more interested in the CPU time that your process used, you should

use the cputime function instead. The tic and toc functions report the actual

wall clock time that elapsed between the calls. This may include time spent

processing other jobs or doing nothing at all. For example,

tic (); sleep (5); toc ()

)

5

t = cputime (); sleep (5); cputime () - t

)

0

(This example also illustrates that the CPU timer may have a fairly coarse

resolution.)

Built-in Functionpause (seconds)

Suspend the execution of the program. If invoked without any arguments,

Octave waits until you type a character. With a numeric argument, it pauses

for the given number of seconds. For example, the following statement prints a

message and then waits 5 seconds before clearing the screen.

fprintf (stderr, "wait please...\n");

pause (5);

clc;

Built-in Functionsleep (seconds)

Suspend the execution of the program for the given number of seconds.

184 GNU Octave

Built-in Functionusleep (microseconds)

Suspend the execution of the program for the given number of microseconds. On

systems where it is not possible to sleep for periods of time less than one second,

usleep will pause the execution for round (microseconds / 1e6) seconds.

29.2 Filesystem Utilities

Octave includes the following functions for renaming and deleting �les, creating, deleting,

and reading directories, and for getting information about the status of �les.

Built-in Function[err, msg] = rename (old, new)

Change the name of �le old to new.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero

and msg contains a system-dependent error message.

Built-in Function[err, msg] = unlink (�le)

Delete �le.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero

and msg contains a system-dependent error message.

Built-in Function[�les, err, msg] = readdir (dir)

Return names of the �les in the directory dir as an array of strings. If an error

occurs, return an empty matrix in �les.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero

and msg contains a system-dependent error message.

Built-in Function[err, msg] = mkdir (dir)

Create a directory named dir.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero

and msg contains a system-dependent error message.

Built-in Function[err, msg] = rmdir (dir)

Remove the directory named dir.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero

and msg contains a system-dependent error message.

Built-in Function[err, msg] = mk�fo (name)

Create a FIFO special �le.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero

and msg contains a system-dependent error message.

Built-in Functionumask (mask)

Set the permission mask for �le creation. The parameter mask is interpreted

as an octal number.

Built-in Function[info, err, msg] = stat (�le)

Built-in Function[info, err, msg] = lstat (�le)

Return a structure s containing the following information about �le.

Chapter 29: System Utilities 185

dev ID of device containing a directory entry for this �le.

ino File number of the �le.

modestr File mode, as a string of ten letters or dashes as would be returned

by ls -l.

nlink Number of links.

uid User ID of �le's owner.

gid Group ID of �le's group.

rdev ID of device for block or character special �les.

size Size in bytes.

atime Time of last access in the same form as time values returned from

time. See Section 29.1 [Timing Utilities], page 179.

mtime Time of last modi�cation in the same form as time values returned

from time. See Section 29.1 [Timing Utilities], page 179.

ctime Time of last �le status change in the same form as time values

returned from time. See Section 29.1 [Timing Utilities], page 179.

blksize Size of blocks in the �le.

blocks Number of blocks allocated for �le.

If the call is successful err is 0 and msg is an empty string. If the �le does

not exist, or some other error occurs, s is an empty matrix, err is �1, and msg

contains the corresponding system error message.

If �le is a symbolic link, stat will return information about the actual �le the is

referenced by the link. Use lstat if you want information about the symbolic

link itself.

For example,

[s, err, msg] = stat ("/vmlinuz")

)

s =

{

atime = 855399756

rdev = 0

ctime = 847219094

uid = 0

size = 389218

blksize = 4096

mtime = 847219094

gid = 6

nlink = 1

blocks = 768

modestr = -rw-r--r--

ino = 9316

dev = 2049

}

)

err = 0

)

msg =

186 GNU Octave

Built-in Functionglob (pattern)

Given an array of strings in pattern, return the list of �le names that any of

them, or an empty string if no patterns match. Tilde expansion is performed

on each of the patterns before looking for matching �le names. For example,

glob ("/vm*")

)

"/vmlinuz"

Note that multiple values are returned in a string matrix with the �ll character

set to ASCII NUL.

Built-in Functionfnmatch (pattern, string)

Return 1 or zero for each element of string that matches any of the elements

of the string array pattern, using the rules of �lename pattern matching. For

example,

fnmatch ("a*b", ["ab"; "axyzb"; "xyzab"])

)

[1; 1; 0]

Built-in Function�le in path (path, �le)

Return the absolute name name of �le if it can be found in path. The value of

path should be a colon-separated list of directories in the format described for

the built-in variable LOADPATH.

If the �le cannot be found in the path, an empty matrix is returned. For

example,

file_in_path (LOADPATH, "nargchk.m")

)

"/share/octave/2.0/m/general/nargchk.m"

Built-in Functiontilde expand (string)

Performs tilde expansion on string. If string begins with a tilde character,

(`~'), all of the characters preceding the �rst slash (or all characters, if there is

no slash) are treated as a possible user name, and the tilde and the following

characters up to the slash are replaced by the home directory of the named

user. If the tilde is followed immediately by a slash, the tilde is replaced by the

home directory of the user running Octave. For example,

tilde_expand ("~joeuser/bin")

)

"/home/joeuser/bin"

tilde_expand ("~/bin")

)

"/home/jwe/bin"

29.3 Controlling Subprocesses

Octave includes some high-level commands like system and popen for starting subpro-

cesses. If you want to run another program to perform some task and then look at its

output, you will probably want to use these functions.

Octave also provides several very low-level Unix-like functions which can also be used

for starting subprocesses, but you should probably only use them if you can't �nd any way

to do what you need with the higher-level functions.

Chapter 29: System Utilities 187

Built-in Functionsystem (string, return output, type)

Execute a shell command speci�ed by string. The second argument is optional.

If type is "async", the process is started in the background and the process id

of the child process is returned immediately. Otherwise, the process is started,

and Octave waits until it exits. If type argument is omitted, a value of "sync"

is assumed.

If two input arguments are given (the actual value of return output is irrelevant)

and the subprocess is started synchronously, or if system is called with one input

argument and one or more output arguments, the output from the command is

returned. Otherwise, if the subprocess is executed synchronously, it's output is

sent to the standard output. To send the output of a command executed with

system through the pager, use a command like

disp (system (cmd, 1));

or

printf ("%s\n", system (cmd, 1));

The system function can return two values. The �rst is any output from the

command that was written to the standard output stream, and the second is

the output status of the command. For example,

[output, status] = system ("echo foo; exit 2");

will set the variable output to the string `foo', and the variable status to the

integer `2'.

Built-in Functionfid = popen (command, mode)

Start a process and create a pipe. The name of the command to run is given

by command. The �le identi�er corresponding to the input or output stream

of the process is returned in �d. The argument mode may be

"r" The pipe will be connected to the standard output of the process,

and open for reading.

"w" The pipe will be connected to the standard input of the process,

and open for writing.

For example,

fid = popen ("ls -ltr / | tail -3", "r");

while (isstr (s = fgets (fid)))

fputs (stdout, s);

endwhile

a

drwxr-xr-x 33 root root 3072 Feb 15 13:28 etc

a

drwxr-xr-x 3 root root 1024 Feb 15 13:28 lib

a

drwxrwxrwt 15 root root 2048 Feb 17 14:53 tmp

Built-in Functionpclose (�d)

Close a �le identi�er that was opened by popen. You may also use fclose for

the same purpose.

188 GNU Octave

Built-in Function[in, out, pid] = popen2 (command, args)

Start a subprocess with two-way communication. The name of the process is

given by command, and args is an array of strings containing options for the

command. The �le identi�ers for the input and output streams of the subprocess

are returned in in and out. If execution of the command is successful, pid

contains the process ID of the subprocess. Otherwise, pid is �1.

For example,

[in, out, pid] = popen2 ("sort", "-nr");

fputs (in, "these\nare\nsome\nstrings\n");

fclose (in);

while (isstr (s = fgets (out)))

fputs (stdout, s);

endwhile

fclose (out);

a

are

a

some

a

strings

a

these

Built-in VariableEXEC PATH

The variable EXEC_PATH is a colon separated list of directories to search when

executing subprograms. Its initial value is taken from the environment variable

OCTAVE_EXEC_PATH (if it exists) or PATH, but that value can be overridden by

the the command line argument --exec-path PATH, or by setting the value of

EXEC_PATH in a startup script. If the value of EXEC_PATH begins (ends) with a

colon, the directories

octave-home/libexec/octave/site/exec/arch

octave-home/libexec/octave/version/exec/arch

are prepended (appended) to EXEC_PATH, where octave-home is the top-level

directory where all of Octave is installed (the default value is `'). If you don't

specify a value for EXEC_PATH explicitly, these special directories are prepended

to your shell path.

In most cases, the following functions simply decode their arguments and make the

corresponding Unix system calls. For a complete example of how they can be used, look at

the de�nition of the function popen2.

Built-in Function[pid, msg] = fork ()

Create a copy of the current process.

Fork can return one of the following values:

> 0 You are in the parent process. The value returned from fork is

the process id of the child process. You should probably arrange to

wait for any child processes to exit.

0 You are in the child process. You can call exec to start another

process. If that fails, you should probably call exit.

Chapter 29: System Utilities 189

< 0 The call to fork failed for some reason. You must take evasive

action. A system dependent error message will be waiting in msg.

Built-in Function[err, msg] = exec (�le, args)

Replace current process with a new process. Calling exec without �rst calling

fork will terminate your current Octave process and replace it with the program

named by �le. For example,

exec ("ls" "-l")

will run ls and return you to your shell prompt.

If successful, exec does not return. If exec does return, err will be nonzero,

and msg will contain a system-dependent error message.

Built-in Function[�le ids, err, msg] = pipe ()

Create a pipe and return the vector �le ids, which corresponding to the reading

and writing ends of the pipe.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero

and msg contains a system-dependent error message.

Built-in Function[�d, msg] = dup2 (old, new)

Duplicate a �le descriptor.

If successful, �d is greater than zero and contains the new �le ID. Otherwise,

�d is negative and msg contains a system-dependent error message.

Built-in Function[pid, msg] = waitpid (pid, options)

Wait for process pid to terminate. The pid argument can be:

�1 Wait for any child process.

0 Wait for any child process whose process group ID is equal to that

of the Octave interpreter process.

> 0 Wait for termination of the child process with ID pid.

The options argument can be:

0 Wait until signal is received or a child process exits (this is the

default if the options argument is missing).

1 Do not hang if status is not immediately available.

2 Report the status of any child processes that are stopped, and

whose status has not yet been reported since they stopped.

3 Implies both 1 and 2.

If the returned value of pid is greater than 0, it is the process ID of the child

process that exited. If an error occurs, pid will be less than zero and msg will

contain a system-dependent error message.

Built-in Function[err, msg] = fcntl (�d, request, arg)

Change the properties of the open �le �d. The following values may be passed

as request:

190 GNU Octave

F_DUPFD Return a duplicate �le descriptor.

F_GETFD Return the �le descriptor ags for �d.

F_SETFD Set the �le descriptor ags for �d.

F_GETFL Return the �le status ags for �d. The following codes may be

returned (some of the ags may be unde�ned on some systems).

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_APPEND Append on each write.

O_NONBLOCK

Nonblocking mode.

O_SYNC Wait for writes to complete.

O_ASYNC Asynchronous I/O.

F_SETFL Set the �le status ags for �d to the value speci�ed by arg. The

only ags that can be changed are O_APPEND and O_NONBLOCK.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero

and msg contains a system-dependent error message.

29.4 Process, Group, and User IDs

Built-in Functiongetpgrp ()

Return the process group id of the current process.

Built-in Functiongetpid ()

Return the process id of the current process.

Built-in Functiongetppid ()

Return the process id of the parent process.

Built-in Functiongeteuid ()

Return the e�ective user id of the current process.

Built-in Functiongetuid ()

Return the real user id of the current process.

Built-in Functiongetegid ()

Return the e�ective group id of the current process.

Built-in Functiongetgid ()

Return the real group id of the current process.

Chapter 29: System Utilities 191

29.5 Environment Variables

Built-in Functiongetenv (var)

Return the value of the environment variable var. For example,

getenv ("PATH")

returns a string containing the value of your path.

Built-in Functionputenv (var, value)

Set the value of the environment variable var to value.

29.6 Current Working Directory

Commandcd dir

Commandchdir dir

Change the current working directory to dir. For example,

cd ~/octave

Changes the current working directory to `~/octave'. If the directory does not

exist, an error message is printed and the working directory is not changed.

Built-in Functionpwd ()

Return the current working directory.

Built-in VariablePWD

The current working directory. The value of PWD is updated each time the

current working directory is changed with the `cd' command.

Commandls options

Commanddir options

List directory contents. For example,

ls -l

a

total 12

a

-rw-r--r-- 1 jwe users 4488 Aug 19 04:02 foo.m

a

-rw-r--r-- 1 jwe users 1315 Aug 17 23:14 bar.m

The dir and ls commands are implemented by calling your system's directory

listing command, so the available options may vary from system to system.

29.7 Password Database Functions

Octave's password database functions return information in a structure with the follow-

ing �elds.

name The user name.

passwd The encrypted password, if available.

uid The numeric user id.

gid The numeric group id.

192 GNU Octave

gecos The GECOS �eld.

dir The home directory.

shell The initial shell.

In the descriptions of the following functions, this data structure is referred to as a

pw struct.

Loadable Functionpw struct = getpwent ()

Return a structure containing an entry from the password database, opening it

if necessary. Once the end of the data has been reached, getpwent returns 0.

Loadable Functionpw struct = getpwuid (uid).

Return a structure containing the �rst entry from the password database with

the user ID uid. If the user ID does not exist in the database, getpwuid returns

0.

Loadable Functionpw struct = getpwnam (name)

Return a structure containing the �rst entry from the password database with

the user name name. If the user name does not exist in the database, getpwname

returns 0.

Loadable Functionsetpwent ()

Return the internal pointer to the beginning of the password database.

Loadable Functionendpwent ()

Close the password database.

29.8 Group Database Functions

Octave's group database functions return information in a structure with the following

�elds.

name The user name.

passwd The encrypted password, if available.

gid The numeric group id.

mem The members of the group.

In the descriptions of the following functions, this data structure is referred to as a

grp struct.

Loadable Functiongrp struct = getgrent ()

Return an entry from the group database, opening it if necessary. Once the

end of the data has been reached, getgrent returns 0.

Loadable Functiongrp struct = getgrgid (gid).

Return the �rst entry from the group database with the group ID gid. If the

group ID does not exist in the database, getgrgid returns 0.

Chapter 29: System Utilities 193

Loadable Functiongrp struct = getgrnam (name)

Return the �rst entry from the group database with the group name name. If

the group name does not exist in the database, getgrname returns 0.

Loadable Functionsetgrent ()

Return the internal pointer to the beginning of the group database.

Loadable Functionendgrent ()

Close the group database.

29.9 System Information

Built-in Functioncomputer ()

Print or return a string of the form cpu-vendor-os that identi�es the kind of

computer Octave is running on. If invoked with an output argument, the value

is returned instead of printed. For example,

computer ()

a

i586-pc-linux-gnu

x = computer ()

)

x = "i586-pc-linux-gnu"

Built-in Functionisieee ()

Return 1 if your computer claims to conform to the IEEE standard for oating

point calculations.

Built-in Functionversion ()

Return Octave's version number as a string. This is also the value of the built-in

variable OCTAVE_VERSION.

Built-in VariableOCTAVE VERSION

The version number of Octave, as a string.

Built-in Functionoctave con�g info ()

Return a structure containing con�guration and installation information.

Loadable Functiongetrusage ()

Return a structure containing a number of statistics about the current Octave

process. Not all �elds are available on all systems. If it is not possible to get

CPU time statistics, the CPU time slots are set to zero. Other missing data

are replaced by NaN. Here is a list of all the possible �elds that can be present

in the structure returned by getrusage:

idrss Unshared data size.

inblock Number of block input operations.

isrss Unshared stack size.

194 GNU Octave

ixrss Shared memory size.

majflt Number of major page faults.

maxrss Maximum data size.

minflt Number of minor page faults.

msgrcv Number of messages received.

msgsnd Number of messages sent.

nivcsw Number of involuntary context switches.

nsignals Number of signals received.

nswap Number of swaps.

nvcsw Number of voluntary context switches.

oublock Number of block output operations.

stime A structure containing the system CPU time used. The structure

has the elements sec (seconds) usec (microseconds).

utime A structure containing the user CPU time used. The structure has

the elements sec (seconds) usec (microseconds).

Appendix A: Tips and Standards 195

Appendix A Tips and Standards

This chapter describes no additional features of Octave. Instead it gives advice on

making e�ective use of the features described in the previous chapters.

A.1 Writing Clean Octave Programs

Here are some tips for avoiding common errors in writing Octave code intended for

widespread use:

� Since all global variables share the same name space, and all functions share another

name space, you should choose a short word to distinguish your program from other

Octave programs. Then take care to begin the names of all global variables, constants,

and functions with the chosen pre�x. This helps avoid name conicts.

If you write a function that you think ought to be added to Octave under a certain name,

such as fiddle_matrix, don't call it by that name in your program. Call it mylib_

fiddle_matrix in your program, and send mail to hbug-octave@bevo.che.wisc.edui

suggesting that it be added to Octave. If and when it is, the name can be changed

easily enough.

If one pre�x is insu�cient, your package may use two or three alternative common

pre�xes, so long as they make sense.

Separate the pre�x from the rest of the symbol name with an underscore `_'. This will

be consistent with Octave itself and with most Octave programs.

� When you encounter an error condition, call the function error (or usage). The error

and usage functions do not return. See Section 2.5 [Errors], page 24.

� Please put a copyright notice on the �le if you give copies to anyone. Use the same

lines that appear at the top of the function �les distributed with Octave. If you have

not signed papers to assign the copyright to anyone else, then place your name in the

copyright notice.

A.2 Tips for Making Code Run Faster.

Here are some ways of improving the execution speed of Octave programs.

� Avoid looping wherever possible.

� Use iteration rather than recursion whenever possible. Function calls are slow in Oc-

tave.

� Avoid resizing matrices unnecessarily. When building a single result matrix from a

series of calculations, set the size of the result matrix �rst, then insert values into it.

Write

result = zeros (big_n, big_m)

for i = over:and_over

r1 = : : :

r2 = : : :

result (r1, r2) = new_value ();

endfor

instead of

196 GNU Octave

result = [];

for i = ever:and_ever

result = [result, new_value()];

endfor

� Avoid calling eval or feval whenever possible, because they require Octave to parse

input or look up the name of a function in the symbol table.

If you are using eval as an exception handling mechanism and not because you need

to execute some arbitrary text, use the try statement instead. See Section 10.8 [The

try Statement], page 79.

� If you are calling lots of functions but none of them will need to change during your

run, set the variable ignore_function_time_stamp to "all" so that Octave doesn't

waste a lot of time checking to see if you have updated your function �les.

A.3 Tips for Documentation Strings

Here are some tips for the writing of documentation strings.

� Every command, function, or variable intended for users to know about should have a

documentation string.

� An internal variable or subroutine of an Octave program might as well have a docu-

mentation string.

� The �rst line of the documentation string should consist of one or two complete sen-

tences that stand on their own as a summary.

The documentation string can have additional lines that expand on the details of how

to use the function or variable. The additional lines should also be made up of complete

sentences.

� For consistency, phrase the verb in the �rst sentence of a documentation string as

an in�nitive with \to" omitted. For instance, use \Return the frob of A and B." in

preference to \Returns the frob of A and B." Usually it looks good to do likewise for

the rest of the �rst paragraph. Subsequent paragraphs usually look better if they have

proper subjects.

� Write documentation strings in the active voice, not the passive, and in the present

tense, not the future. For instance, use \Return a list containing A and B." instead of

\A list containing A and B will be returned."

� Avoid using the word \cause" (or its equivalents) unnecessarily. Instead of, \Cause

Octave to display text in boldface," write just \Display text in boldface."

� Do not start or end a documentation string with whitespace.

� Format the documentation string so that it �ts in an Emacs window on an 80-column

screen. It is a good idea for most lines to be no wider than 60 characters.

However, rather than simply �lling the entire documentation string, you can make it

much more readable by choosing line breaks with care. Use blank lines between topics

if the documentation string is long.

� Do not indent subsequent lines of a documentation string so that the text is lined up

in the source code with the text of the �rst line. This looks nice in the source code,

Appendix A: Tips and Standards 197

but looks bizarre when users view the documentation. Remember that the indentation

before the starting double-quote is not part of the string!

� The documentation string for a variable that is a yes-or-no ag should start with words

such as \Nonzero means: : :", to make it clear that all nonzero values are equivalent and

indicate explicitly what zero and nonzero mean.

� When a function's documentation string mentions the value of an argument of the

function, use the argument name in capital letters as if it were a name for that value.

Thus, the documentation string of the operator / refers to its second argument as

`DIVISOR', because the actual argument name is divisor.

Also use all caps for meta-syntactic variables, such as when you show the decomposition

of a list or vector into subunits, some of which may vary.

A.4 Tips on Writing Comments

Here are the conventions to follow when writing comments.

`#' Comments that start with a single sharp-sign, `#', should all be aligned to the

same column on the right of the source code. Such comments usually explain

how the code on the same line does its job. In the Emacs mode for Octave, the

M-; (indent-for-comment) command automatically inserts such a `#' in the

right place, or aligns such a comment if it is already present.

`##' Comments that start with two semicolons, `##', should be aligned to the same

level of indentation as the code. Such comments usually describe the purpose

of the following lines or the state of the program at that point.

The indentation commands of the Octave mode in Emacs, such as M-; (indent-for-

comment) and TAB (octave-indent-line) automatically indent comments according to

these conventions, depending on the number of semicolons. See section \Manipulating

Comments" in The GNU Emacs Manual.

A.5 Conventional Headers for Octave Functions

Octave has conventions for using special comments in function �les to give information

such as who wrote them. This section explains these conventions.

The top of the �le should contain a copyright notice, followed by a block of comments

that can be used as the help text for the function. Here is an example:

Copyright (C) 1996, 1997 John W. Eaton

##

This file is part of Octave.

##

Octave is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public

License as published by the Free Software Foundation;

either version 2, or (at your option) any later version.

##

Octave is distributed in the hope that it will be useful,

198 GNU Octave

but WITHOUT ANY WARRANTY; without even the implied

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more

details.

##

You should have received a copy of the GNU General Public

License along with Octave; see the file COPYING. If not,

write to the Free Software Foundation, 59 Temple Place -

Suite 330, Boston, MA 02111-1307, USA.

usage: [IN, OUT, PID] = popen2 (COMMAND, ARGS)

##

Start a subprocess with two-way communication. COMMAND

specifies the name of the command to start. ARGS is an

array of strings containing options for COMMAND. IN and

OUT are the file ids of the input and streams for the

subprocess, and PID is the process id of the subprocess,

or -1 if COMMAND could not be executed.

##

Example:

##

[in, out, pid] = popen2 ("sort", "-nr");

fputs (in, "these\nare\nsome\nstrings\n");

fclose (in);

while (isstr (s = fgets (out)))

fputs (stdout, s);

endwhile

fclose (out);

Octave uses the �rst block of comments in a function �le that do not appear to be a

copyright notice as the help text for the �le. For Octave to recognize the �rst comment

block as a copyright notice, it must match the regular expression

^ Copyright (C).*\n\n This file is part of Octave.

or

^ Copyright (C).*\n\n This program is free softwar

(after stripping the leading comment characters). This is a fairly strict requirement, and

may be relaxed somewhat in the future.

After the copyright notice and help text come several header comment lines, each be-

ginning with `## header-name:'. For example,

Author: jwe

Keywords: subprocesses input-output

Maintainer: jwe

Here is a table of the conventional possibilities for header-name:

`Author' This line states the name and net address of at least the principal author of the

library.

Author: John W. Eaton <jwe@bevo.che.wsic.edu>

Appendix A: Tips and Standards 199

`Maintainer'

This line should contain a single name/address as in the Author line, or an

address only, or the string `jwe'. If there is no maintainer line, the person(s)

in the Author �eld are presumed to be the maintainers. The example above is

mildly bogus because the maintainer line is redundant.

The idea behind the `Author' and `Maintainer' lines is to make possible a

function to \send mail to the maintainer" without having to mine the name

out by hand.

Be sure to surround the network address with `<: : :>' if you include the person's

full name as well as the network address.

`Created' This optional line gives the original creation date of the �le. For historical

interest only.

`Version' If you wish to record version numbers for the individual Octave program, put

them in this line.

`Adapted-By'

In this header line, place the name of the person who adapted the library for

installation (to make it �t the style conventions, for example).

`Keywords'

This line lists keywords. Eventually, it will be used by an apropos command

to allow people will �nd your package when they're looking for things by topic

area. To separate the keywords, you can use spaces, commas, or both.

Just about every Octave function ought to have the `Author' and `Keywords' header

comment lines. Use the others if they are appropriate. You can also put in header lines

with other header names|they have no standard meanings, so they can't do any harm.

200 GNU Octave

Appendix B: Known Causes of Trouble 201

Appendix B Known Causes of Trouble

This section describes known problems that a�ect users of Octave. Most of these are

not Octave bugs per se|if they were, we would �x them. But the result for a user may be

like the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that

are too much work to add, and some are places where people's opinions di�er as to what is

best.

B.1 Actual Bugs We Haven't Fixed Yet

� Output that comes directly from Fortran functions is not sent through the pager and

may appear out of sequence with other output that is sent through the pager. One way

to avoid this is to force pending output to be ushed before calling a function that will

produce output from within Fortran functions. To do this, use the command

fflush (stdout)

Another possible workaround is to use the command

page_screen_output = "false"

to turn the pager o�.

� If you get messages like

Input line too long

when trying to plot many lines on one graph, you have probably generated a plot

command that is too larger for gnuplot's �xed-length bu�er for commands. Splitting

up the plot command doesn't help because replot is implemented in gnuplot by simply

appending the new plotting commands to the old command line and then evaluating

it again.

You can demonstrate this `feature' by running gnuplot and doing something like

plot sin (x), sin (x), sin (x), ... lots more ..., sin (x)

and then

replot sin (x), sin (x), sin (x), ... lots more ..., sin (x)

after repeating the replot command a few times, gnuplot will give you an error.

Also, it doesn't help to use backslashes to enter a plot command over several lines,

because the limit is on the overall command line length, once the backslashed lines are

all pasted together.

Because of this, Octave tries to use as little of the command-line length as possible

by using the shortest possible abbreviations for all the plot commands and options.

Unfortunately, the length of the temporary �le names is probably what is taking up

the most space on the command line.

You can buy a little bit of command line space by setting the environment variable

TMPDIR to be "." before starting Octave, or you can increase the maximum command

line length in gnuplot by changing the following limits in the �le plot.h in the gnuplot

distribution and recompiling gnuplot.

202 GNU Octave

#define MAX_LINE_LEN 32768 /* originally 1024 */

#define MAX_TOKENS 8192 /* originally 400 */

Of course, this doesn't really �x the problem, but it does make it much less likely that

you will run into trouble unless you are putting a very large number of lines on a given

plot.

A list of ideas for future enhancements is distributed with Octave. See the �le `PROJECTS'

in the top level directory in the source distribution.

B.2 Reporting Bugs

Your bug reports play an essential role in making Octave reliable.

When you encounter a problem, the �rst thing to do is to see if it is already known. See

Appendix B [Trouble], page 201. If it isn't known, then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem, or it may not.

In any case, the principal function of a bug report is to help the entire community by

making the next version of Octave work better. Bug reports are your contribution to the

maintenance of Octave.

In order for a bug report to serve its purpose, you must include the information that

makes it possible to �x the bug.

If you have Octave working at all, the easiest way to prepare a complete bug report

is to use the Octave function bug_report. When you execute this function, Octave will

prompt you for a subject and then invoke the editor on a �le that already contains all the

con�guration information. When you exit the editor, Octave will mail the bug report for

you.

B.3 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

� If Octave gets a fatal signal, for any input whatever, that is a bug. Reliable interpreters

never crash.

� If Octave produces incorrect results, for any input whatever, that is a bug.

� Some output may appear to be incorrect when it is in fact due to a program whose

behavior is unde�ned, which happened by chance to give the desired results on another

system. For example, the range operator may produce di�erent results because of

di�erences in the way oating point arithmetic is handled on various systems.

� If Octave produces an error message for valid input, that is a bug.

� If Octave does not produce an error message for invalid input, that is a bug. However,

you should note that your idea of \invalid input" might be my idea of \an extension"

or \support for traditional practice".

� If you are an experienced user of programs like Octave, your suggestions for improve-

ment are welcome in any case.

Appendix B: Known Causes of Trouble 203

B.4 Where to Report Bugs

If you have Octave working at all, the easiest way to prepare a complete bug report

is to use the Octave function bug_report. When you execute this function, Octave will

prompt you for a subject and then invoke the editor on a �le that already contains all the

con�guration information. When you exit the editor, Octave will mail the bug report for

you.

If for some reason you cannot use Octave's bug_report function, send bug reports for

Octave to hbug-octave@bevo.che.wisc.edui.

Do not send bug reports to `help-octave'. Most users of Octave do not want to receive

bug reports. Those that do have asked to be on the mailing list.

As a last resort, send bug reports on paper to:

Octave Bugs c/o John W. Eaton

University of Wisconsin-Madison

Department of Chemical Engineering

1415 Engineering Drive

Madison, Wisconsin 53706 USA

B.5 How to Report Bugs

Send bug reports for Octave to one of the addresses listed in Section B.4 [Bug Lists],

page 203.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you

are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and

they conclude that some details don't matter. Thus, you might assume that the name of

the variable you use in an example does not matter. Well, probably it doesn't, but one

cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from

the location where that name is stored in memory; perhaps, if the name were di�erent, the

contents of that location would fool the interpreter into doing the right thing despite the

bug. Play it safe and give a speci�c, complete example.

Keep in mind that the purpose of a bug report is to enable someone to �x the bug if it

is not known. Always write your bug reports on the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, \Does this ring a bell?" This cannot

help us �x a bug. It is better to send a complete bug report to begin with.

Try to make your bug report self-contained. If we have to ask you for more information, it

is best if you include all the previous information in your response, as well as the information

that was missing.

To enable someone to investigate the bug, you should include all these things:

� The version of Octave. You can get this by noting the version number that is printed

when Octave starts, or running it with the `-v' option.

� A complete input �le that will reproduce the bug.

A single statement may not be enough of an example|the bug might depend on other

details that are missing from the single statement where the error �nally occurs.

204 GNU Octave

� The command arguments you gave Octave to execute that example and observe the

bug. To guarantee you won't omit something important, list all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we

would not encounter the bug.

� The type of machine you are using, and the operating system name and version number.

� The command-line arguments you gave to the configure command when you installed

the interpreter.

� A complete list of any modi�cations you have made to the interpreter source.

Be precise about these changes|show a context di� for them.

� Details of any other deviations from the standard procedure for installing Octave.

� A description of what behavior you observe that you believe is incorrect. For example,

"The interpreter gets a fatal signal," or, "The output produced at line 208 is incorrect."

Of course, if the bug is that the interpreter gets a fatal signal, then one can't miss it.

But if the bug is incorrect output, we might not notice unless it is glaringly wrong.

Even if the problem you experience is a fatal signal, you should still say so explicitly.

Suppose something strange is going on, such as, your copy of the interpreter is out

of synch, or you have encountered a bug in the C library on your system. Your copy

might crash and the copy here would not. If you said to expect a crash, then when the

interpreter here fails to crash, we would know that the bug was not happening. If you

don't say to expect a crash, then we would not know whether the bug was happening.

We would not be able to draw any conclusion from our observations.

Often the observed symptom is incorrect output when your program is run. Unfortu-

nately, this is not enough information unless the program is short and simple. It is very

helpful if you can include an explanation of the expected output, and why the actual

output is incorrect.

� If you wish to suggest changes to the Octave source, send them as context di�s. If you

even discuss something in the Octave source, refer to it by context, not by line number,

because the line numbers in the development sources probably won't match those in

your sources.

Here are some things that are not necessary:

� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to

the input �le will make the bug go away and which changes will not a�ect it. Such

information is usually not necessary to enable us to �x bugs in Octave, but if you can

�nd a simpler example to report instead of the original one, that is a convenience.

Errors in the output will be easier to spot, running under the debugger will take less

time, etc. Most Octave bugs involve just one function, so the most straightforward way

to simplify an example is to delete all the function de�nitions except the one in which

the bug occurs.

However, simpli�cation is not vital; if you don't want to do this, report the bug anyway

and send the entire test case you used.

� A patch for the bug. Patches can be helpful, but if you �nd a bug, you should report

it, even if you cannot send a �x for the problem.

Appendix B: Known Causes of Trouble 205

B.6 Sending Patches for Octave

If you would like to write bug �xes or improvements for Octave, that is very helpful.

When you send your changes, please follow these guidelines to avoid causing extra work for

us in studying the patches.

If you don't follow these guidelines, your information might still be useful, but using it

will take extra work. Maintaining Octave is a lot of work in the best of circumstances, and

we can't keep up unless you do your best to help.

� Send an explanation with your changes of what problem they �x or what improvement

they bring about. For a bug �x, just include a copy of the bug report, and explain why

the change �xes the bug.

� Always include a proper bug report for the problem you think you have �xed. We need

to convince ourselves that the change is right before installing it. Even if it is right, we

might have trouble judging it if we don't have a way to reproduce the problem.

� Include all the comments that are appropriate to help people reading the source in the

future understand why this change was needed.

� Don't mix together changes made for di�erent reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them

both. We might want to install just one.

� Use `diff -c' to make your di�s. Di�s without context are hard for us to install

reliably. More than that, they make it hard for us to study the di�s to decide whether

we want to install them. Unidi� format is better than contextless di�s, but not as easy

to read as `-c' format.

If you have GNU di�, use `diff -cp', which shows the name of the function that each

change occurs in.

� Write the change log entries for your changes.

Read the `ChangeLog' �le to see what sorts of information to put in, and to learn the

style that we use. The purpose of the change log is to show people where to �nd what

was changed. So you need to be speci�c about what functions you changed; in large

functions, it's often helpful to indicate where within the function the change was made.

On the other hand, once you have shown people where to �nd the change, you need

not explain its purpose. Thus, if you add a new function, all you need to say about it

is that it is new. If you feel that the purpose needs explaining, it probably does|but

the explanation will be much more useful if you put it in comments in the code.

If you would like your name to appear in the header line for who made the change,

send us the header line.

B.7 How To Get Help with Octave

The mailing list hhelp-octave@bevo.che.wisc.edui exists for the discussion of matters

related to using and installing Octave. If would like to join the discussion, please send a

short note to hhelp-octave-request@bevo.che.wisc.edui.

Please do not send requests to be added or removed from the the mailing list, or other

administrative trivia to the list itself.

206 GNU Octave

If you think you have found a bug in the installation procedure, however, you should

send a complete bug report for the problem to hbug-octave@bevo.che.wisc.edui. See

Section B.5 [Bug Reporting], page 203 for information that will help you to submit a useful

report.

Appendix C: Installing Octave 207

Appendix C Installing Octave

Here is the procedure for installing Octave from scratch on a Unix system. For in-

structions on how to install the binary distributions of Octave, see Section C.3 [Binary

Distributions], page 212.

� Run the shell script `configure'. This will determine the features your system has

(or doesn't have) and create a �le named `Makefile' from each of the �les named

`Makefile.in'.

Here is a summary of the con�gure options that are most frequently used when building

Octave:

--prefix=pre�x

Install Octave in subdirectories below pre�x. The default value of pre�x is

`/usr/local'.

--srcdir=dir

Look for Octave sources in the directory dir.

--with-f2c

Use f2c even if a Fortran compiler is available.

--with-g77

Use g77 to compile Fortran code.

--enable-shared

Create shared libraries. If you are planning to use --enable-lite-

kernelel or the dynamic loading features, you will probably want to

use this option. It will make your `.oct' �les much smaller and on some

systems it may be necessary to build shared libraries in order to use

dynamically linked functions.

You may also want to build a shared version of libg++, if your system

doesn't already have one. Note that a patch is needed to build shared ver-

sions of version 2.7.2 of libg++ and libstdc++ on the HP-PA architecture.

You can �nd the patch at `ftp://ftp.cygnus.com/pub/g++/libg++-2.7.2-hppa-gcc-fix'.

--enable-dl

Use dlopen and friends to make Octave capable of dynamically linking

externally compiled functions. This only works on systems that actually

have these functions. If you plan on using this feature, you should probably

also use --enable-shared to reduce the size of your `.oct' �les.

--enable-shl

Use shl_load and friends to make Octave capable of dynamically linking

externally compiled functions. This only works on systems that actually

have these functions (only HP-UX systems). If you plan on using this

feature, you should probably also use --enable-shared to reduce the size

of your `.oct' �les.

208 GNU Octave

--enable-lite-kernel

Compile smaller kernel. This currently requires the dynamic linking func-

tions dlopen or shl_load and friends so that Octave can load functions at

run time that are not loaded at compile time.

--help Print a summary of the options recognized by the con�gure script.

See the �le `INSTALL' for more information about the command line options used by

con�gure. That �le also contains instructions for compiling in a directory other than

where the source is located.

� Run make.

You will need a recent version of GNU Make. Modifying Octave's make�les to work

with other make programs is probably not worth your time. We recommend you get

and compile GNU Make instead.

For plotting, you will need to have gnuplot installed on your system. Gnuplot is a

command-driven interactive function plotting program. Gnuplot is copyrighted, but

freely distributable. The `gnu' in gnuplot is a coincidence|it is not related to the

GNU project or the FSF in any but the most peripheral sense.

For version 2.0.5, you must have the GNU C++ compiler (gcc) version 2.7.2 or later to

compile Octave. You will also need version 2.7.1 or 2.7.2 of the GNU C++ class library

(libg++). If you plan to modify the parser you will also need GNU bison and flex. If

you modify the documentation, you will need GNU Texinfo, along with the patch for

the makeinfo program that is distributed with Octave.

GNU Make, gcc, and libg++, gnuplot, bison, flex, and Texinfo are all available

from many anonymous ftp archives. The primary site is `prep.ai.mit.edu', but it

is often very busy. A list of sites that mirror the software on prep is available by

anonymous ftp from `ftp://prep.ai.mit.edu/pub/gnu/GNUinfo/FTP', or by �ngering

hfsf@prep.ai.mit.edui.

If you don't have a Fortran compiler, or if your Fortran compiler doesn't work like the

traditional Unix f77, you will need to have the Fortran to C translator f2c. You can

get f2c from any number of anonymous ftp archives. The most recent version of f2c

is always available from `netlib.att.com'.

On an otherwise idle Pentium 133 running Linux, it will take somewhere between 1-

1/2 to 3 hours to compile everything, depending on whether you are building shared

libraries. You will need about 100 megabytes of disk storage to work with (considerably

less if you don't compile with debugging symbols). To do that, use the command

make CFLAGS=-O CXXFLAGS=-O LDFLAGS=

instead of just `make'.

� If you encounter errors while compiling Octave, �rst check the list of known prob-

lems below to see if there is a workaround or solution for your problem. If not, see

Appendix B [Trouble], page 201, for information about how to report bugs.

� Once you have successfully compiled Octave, run `make install'.

This will install a copy of octave, its libraries, and its documentation in the destination

directory. As distributed, Octave is installed in the following directories. In the table

below, pre�x defaults to `/usr/local', version stands for the current version number

Appendix C: Installing Octave 209

of the interpreter, and arch is the type of computer on which Octave is installed (for

example, `i586-unknown-gnu').

`pre�x/bin'

Octave and other binaries that people will want to run directly.

`pre�x/lib'

Libraries like libcruft.a and liboctave.a.

`pre�x/share'

Architecture-independent data �les.

`pre�x/include/octave'

Include �les distributed with Octave.

`pre�x/man/man1'

Unix-style man pages describing Octave.

`pre�x/info'

Info �les describing Octave.

`pre�x/share/octave/version/m'

Function �les distributed with Octave. This includes the Octave version,

so that multiple versions of Octave may be installed at the same time.

`pre�x/lib/octave/version/exec/arch'

Executables to be run by Octave rather than the user.

`pre�x/lib/octave/version/oct/arch'

Object �les that will be dynamically loaded.

`pre�x/share/octave/version/imagelib'

Image �les that are distributed with Octave.

C.1 Notes

� You must use the version of GNU Info distributed with Octave, because it includes

some changes to allow Octave to search the indices of the info �les. If you would like,

you should be able to replace other copies of the Info browser that you have with the

one distributed with Octave. Patches relative to a recent release of the GNU Info

browser are included in the �le `INFO.PATCH' in the Octave source distribution. This

modi�cation has been submitted to the GNU Info maintainer, and should appear in

some future release. Once that happens, the GNU Info browser will no longer be

distributed with Octave.

C.2 Installation Problems

This section contains a list of problems (and some apparent problems that don't really

mean anything is wrong) that may show up during installation of Octave.

� On some SCO systems, info fails to compile if HAVE_TERMIOS_H is de�ned int

`config.h'. Simply removing the de�nition from `info/config.h' should allow it

to compile.

210 GNU Octave

� If configure �nds dlopen, dlsym, dlclose, and dlerror, but not the header �le

`dlfcn.h', you need to �nd the source for the header �le and install it in the directory

`usr/include'. This is reportedly a problem with Slackware 3.1. For Linux/GNU

systems, the source for `dlfcn.h' is in the ldso package.

� Building `.oct' �les doesn't work.

You should probably have a shared version of libg++. A patch is needed to build shared

versions of version 2.7.2 of libg++ and libstdc++ on the HP-PA architecture. You can

�nd the patch at `ftp://ftp.cygnus.com/pub/g++/libg++-2.7.2-hppa-gcc-fix'.

� If you encounter errors like

passing `void (*)()' as argument 2 of

`octave_set_signal_handler(int, void (*)(int))'

or

warning: ANSI C++ prohibits conversion from `(int)' to `(...)'

while compiling `sighandlers.cc', you may need to edit some �les in the gcc include

subdirectory to add proper prototypes for functions there. For example, Ultrix 4.2

needs proper declarations for the signal function and the SIG_IGN macro in the �le

`signal.h'.

On some systems the SIG_IGN macro is de�ned to be something like this:

#define SIG_IGN (void (*)())1

when it should really be something like:

#define SIG_IGN (void (*)(int))1

to match the prototype declaration for the signal function. This change should also

be made for the SIG_DFL and SIG_ERR symbols. It may be necessary to change the

de�nitions in `sys/signal.h' as well.

The gcc fixincludes and fixproto scripts should probably �x these problems when

gcc installs its modi�ed set of header �les, but I don't think that's been done yet.

You should not change the �les in `/usr/include'. You can �nd the gcc include

directory tree by running the command

gcc -print-libgcc-file-name

The directory of gcc include �les normally begins in the same directory that contains

the �le `libgcc.a'.

� There is a bug with the makeinfo program that is distributed with Texinfo (through

version 3.9) that causes the indices in Octave's on-line manual to be generated incor-

rectly. If you need to recreate the on-line documentation, you should get the makeinfo

program that is distributed with texinfo-3.9 and apply the patch for makeinfo that is

distributed with Octave. See the �le `MAKEINFO.PATCH' for more details.

� Some of the Fortran subroutines may fail to compile with older versions of the Sun

Fortran compiler. If you get errors like

zgemm.f:

zgemm:

warning: unexpected parent of complex expression subtree

zgemm.f, line 245: warning: unexpected parent of complex

expression subtree

Appendix C: Installing Octave 211

warning: unexpected parent of complex expression subtree

zgemm.f, line 304: warning: unexpected parent of complex

expression subtree

warning: unexpected parent of complex expression subtree

zgemm.f, line 327: warning: unexpected parent of complex

expression subtree

pcc_binval: missing IR_CONV in complex op

make[2]: *** [zgemm.o] Error 1

when compiling the Fortran subroutines in the `libcruft' subdirectory, you should

either upgrade your compiler or try compiling with optimization turned o�.

� On NeXT systems, if you get errors like this:

/usr/tmp/cc007458.s:unknown:Undefined local symbol LBB7656

/usr/tmp/cc007458.s:unknown:Undefined local symbol LBE7656

when compiling `Array.cc' and `Matrix.cc', try recompiling these �les without -g.

� Some people have reported that calls to shell cmd and the pager do not work on SunOS

systems. This is apparently due to having G_HAVE_SYS_WAIT de�ned to be 0 instead of

1 when compiling libg++.

� On NeXT systems, linking to `libsys_s.a' may fail to resolve the following functions

_tcgetattr

_tcsetattr

_tcflow

which are part of `libposix.a'. Unfortunately, linking Octave with -posix results in

the following unde�ned symbols.

.destructors_used

.constructors_used

_objc_msgSend

_NXGetDefaultValue

_NXRegisterDefaults

.objc_class_name_NXStringTable

.objc_class_name_NXBundle

One kluge around this problem is to extract `termios.o' from `libposix.a', put it in

Octave's `src' directory, and add it to the list of �les to link together in the make�le.

Suggestions for better ways to solve this problem are welcome!

� If Octave crashes immediately with a oating point exception, it is likely that it is

failing to initialize the IEEE oating point values for in�nity and NaN.

If your system actually does support IEEE arithmetic, you should be able to �x this

problem by modifying the function octave_ieee_init in the �le `lo-ieee.cc' to cor-

rectly initialize Octave's internal in�nity and NaN variables.

If your system does not support IEEE arithmetic but Octave's con�gure script incor-

rectly determined that it does, you can work around the problem by editing the �le

`config.h' to not de�ne HAVE_ISINF, HAVE_FINITE, and HAVE_ISNAN.

In any case, please report this as a bug since it might be possible to modify Octave's

con�guration script to automatically determine the proper thing to do.

212 GNU Octave

C.3 Binary Distributions

Although Octave is not very di�cult to build from its sources, it is a relatively large

program that does require a signi�cant amount of time and disk space to compile and install.

Because of this, many people want to be able to obtain binary distributions so they can

start using Octave immediately, without having to bother with the details of compiling it

�rst. This is understandable, so I try to maintain a current collection of binary distributions

at `ftp://ftp.che.wisc.edu/pub/octave/BINARIES'.

Please understand, however, that there is only a limited amount of time available to

devote to making binaries, so binaries may not be immediately available for some platforms.

(Please contact hbug-octave@bevo.che.wisc.edui if you are interested in helping make a

binary distribution available for your system.)

Also, binary distributions are limited to static binaries that do not support dynamic

linking. For earlier versions of Octave, I tried distributing dynamically linked binaries but

that proved to be too much trouble to support. If you want to have a copy of Octave that

includes all the features described in this manual, you will have to build it from the sources

yourself, or �nd someone else who is willing to do it for you.

C.3.1 Installing Octave from a Binary Distribution

To install Octave from a binary distribution, execute the command

sh ./install-octave

in the top level directory of the distribution.

Binary distributions are normally compiled assuming that Octave will be installed in the

following subdirectories of `/usr/local'.

`bin' Octave and other binaries that people will want to run directly.

`lib' Shared libraries that Octave needs in order to run. These �les are not included

if you are installing a statically linked version of Octave.

`man/man1'

Unix-style man pages describing Octave.

`info' Info �les describing Octave.

`share/octave/version/m'

Function �les distributed with Octave. This includes the Octave version, so

that multiple versions of Octave may be installed at the same time.

`libexec/octave/version/exec/arch'

Executables to be run by Octave rather than the user.

`libexec/octave/version/oct/arch'

Object �les that will be dynamically loaded.

`share/octave/version/imagelib'

Image �les that are distributed with Octave.

where version stands for the current version number of the interpreter, and arch is the type

of computer on which Octave is installed (for example, `i486-OS/2').

Appendix C: Installing Octave 213

If these directories don't exist, the script install-octave will create them for you. The

installation script also creates the following subdirectories of `/usr/local' that are intended

for locally installed functions:

`share/octave/site/m'

Locally installed M-�les.

`libexec/octave/site/exec/arch'

Locally installed binaries intended to be run by Octave rather than by the user.

`libexec/octave/site/octave/arch'

Local object �les that will be dynamically linked.

If it is not possible for you to install Octave in `/usr/local', or if you would prefer to

install it in a di�erent directory, you can specify the name of the top level directory as an

argument to the `install-octave' script. For example:

sh ./install-octave /some/other/directory

will install Octave in subdirectories of the directory `/some/other/directory'.

C.3.2 Creating a Binary Distribution

Here is how to build a binary distribution for others to use. If you want to make a

binary distribution for your system available along with the Octave sources and binaries on

`ftp.che.wisc.edu', please follow this procedure. For directions explaining how to make

the binary available on the ftp site, please contact hbug-octave@bevo.che.wisc.edui.

� Unpack the source distribution:

gunzip -c octave-2.0.5.tar.gz | tar xf -

� Change your current directory to the top-level directory of the source distribution:

cd octave-2.0.5

� Make the binary distribution:

make binary-dist

This will create a compressed tar �le ready for distribution. It will contain statically

linked binaries and have a name like `octave-2.0.5-i486-OS/2.tar.gz'

214 GNU Octave

Appendix D: Using Emacs With Octave 215

Appendix D Using Emacs With Octave

The development of Octave code can greatly be facilitated using Emacs with Octave

mode, a major mode for editing Octave �les which can e.g. automatically indent the code,

do some of the typing (with Abbrev mode) and show keywords, comments, strings, etc. in

di�erent faces (with Font-lock mode on devices that support it).

It is also possible to run Octave from within Emacs, either by directly entering commands

at the prompt in a bu�er in Inferior Octave mode, or by interacting with Octave from within

a �le with Octave code. This is useful in particular for debugging Octave code.

Finally, you can convince Octave to use the Emacs info reader for help -i.

All functionality is provided by the Emacs Lisp package `octave'. This chapter describes

how to set up and use this package.

Please contact hKurt.Hornik@ci.tuwien.ac.ati if you have any questions or sugges-

tions on using Emacs with Octave.

D.1 Installing the Emacs Octave Package

The Emacs package `octave' consists of `octave-mod.el', `octave-inf.el', and

`octave-hlp.el'. These �les, or better yet their byte-compiled versions, should be some-

where in your Emacs load-path.

If you have GNU Emacs with a version number at least as high as 19.35, you are all set

up, because the package is respectively will be part of GNU Emacs as of version 19.35.

Otherwise, copy the three �les from the `emacs' subdirectory of the Octave distribution

to a place where Emacs can �nd them (this depends on how your Emacs was installed).

Byte-compile them for speed if you want.

D.2 Using Octave Mode

If you are lucky, your sysadmins have already arranged everything so that Emacs auto-

matically goes into Octave mode whenever you visit an Octave code �le as characterized by

its extension `.m'. If not, proceed as follows.

1. To begin using Octave mode for all `.m' �les you visit, add the following lines to a �le

loaded by Emacs at startup time, typically your `~/.emacs' �le:

(autoload 'octave-mode "octave-mod" nil t)

(setq auto-mode-alist

(cons '("\\.m$" . octave-mode) auto-mode-alist))

2. Finally, to turn on the abbrevs, auto-�ll and font-lock features automatically, also add

the following lines to one of the Emacs startup �les:

(add-hook 'octave-mode-hook

(lambda ()

(abbrev-mode 1)

(auto-fill-mode 1)

(if (eq window-system 'x)

(font-lock-mode 1))))

See the Emacs manual for more information about how to customize Font-lock mode.

216 GNU Octave

In Octave mode, the following special Emacs commands can be used in addition to the

standard Emacs commands.

C-h m Describe the features of Octave mode.

h

LFD

i

Reindent the current Octave line, insert a newline and indent the new line

(octave-reindent-then-newline-and-indent). An abbrev before point is

expanded if abbrev-mode is non-nil.

h

TAB

i

Indents current Octave line based on its contents and on previous lines (indent-

according-to-mode).

; Insert an \electric" semicolon (octave-electric-semi). If octave-auto-

newline is non-nil, typing a `;' automatically reindents the current line,

inserts a newline and indents the new line.

` Start entering an abbreviation (octave-abbrev-start). If Abbrev mode is

turned on, typing `C-h or `? lists all abbrevs. Any other key combination is

executed normally. Note that all Octave abbrevs start with a grave accent.

M-

h

LFD

i

Break line at point and insert continuation marker and alignment (octave-

split-line).

M-

h

TAB

i

Perform completion on Octave symbol preceding point, comparing that sym-

bol against Octave's reserved words and builtin variables (octave-complete-

symbol).

M-C-a Move backward to the beginning of a function (octave-beginning-of-defun).

With pre�x argument N, do it that many times if N is positive; otherwise, move

forward to the N-th following beginning of a function.

M-C-e Move forward to the end of a function (octave-end-of-defun). With pre�x

argument N, do it that many times if N is positive; otherwise, move back to

the N-th preceding end of a function.

M-C-h Puts point at beginning and mark at the end of the current Octave function,

i.e., the one containing point or following point (octave-mark-defun).

M-C-q Properly indents the Octave function which contains point (octave-indent-

defun).

M-; If there is no comment already on this line, create a code-level comment (started

by two comment characters) if the line is empty, or an in-line comment (started

by one comment character) otherwise (octave-indent-for-comment). Point

is left after the start of the comment which is properly aligned.

C-c ; Puts the comment character `#' (more precisely, the string value of octave-

comment-start) at the beginning of every line in the region (octave-comment-

region). With just C-u pre�x argument, uncomment each line in the region.

A numeric pre�x argument N means use N comment characters.

C-c : Uncomments every line in the region (octave-uncomment-region).

C-c C-p Move one line of Octave code backward, skipping empty and comment lines

(octave-previous-code-line). With numeric pre�x argument N, move that

many code lines backward (forward if N is negative).

Appendix D: Using Emacs With Octave 217

C-c C-n Move one line of Octave code forward, skipping empty and comment lines

(octave-next-code-line). With numeric pre�x argument N, move that many

code lines forward (backward if N is negative).

C-c C-a Move to the `real' beginning of the current line (octave-beginning-of-line).

If point is in an empty or comment line, simply go to its beginning; otherwise,

move backwards to the beginning of the �rst code line which is not inside a

continuation statement, i.e., which does not follow a code line ending in `...'

or `\', or is inside an open parenthesis list.

C-c C-e Move to the `real' end of the current line (octave-end-of-line). If point is in

a code line, move forward to the end of the �rst Octave code line which does

not end in `...' or `\' or is inside an open parenthesis list. Otherwise, simply

go to the end of the current line.

C-c M-C-n Move forward across one balanced begin-end block of Octave code (octave-

forward-block). With numeric pre�x argument N, move forward across n

such blocks (backward if N is negative).

C-c M-C-p Move back across one balanced begin-end block of Octave code (octave-

backward-block). With numeric pre�x argument N, move backward across N

such blocks (forward if N is negative).

C-c M-C-d Move forward down one begin-end block level of Octave code (octave-down-

block). With numeric pre�x argument, do it that many times; a negative

argument means move backward, but still go down one level.

C-c M-C-u Move backward out of one begin-end block level of Octave code (octave-

backward-up-block). With numeric pre�x argument, do it that many times;

a negative argument means move forward, but still to a less deep spot.

C-c M-C-h Put point at the beginning of this block, mark at the end (octave-mark-block).

The block marked is the one that contains point or follows point.

C-c] Close the current block on a separate line (octave-close-block). An error is

signaled if no block to close is found.

C-c f Insert a function skeleton, prompting for the function's name, arguments and

return values which have to be entered without parens (octave-insert-defun).

C-c C-h Search the function, operator and variable indices of all info �les with docu-

mentation for Octave for entries (octave-help). If used interactively, the entry

is prompted for with completion. If multiple matches are found, one can cycle

through them using the standard `,' (Info-index-next) command of the Info

reader.

The variable octave-help-files is a list of �les to search through and defaults

to '("octave"). If there is also an Octave Local Guide with corresponding info

�le, say, `octave-LG', you can have octave-help search both �les by

(setq octave-help-files '("octave" "octave-LG"))

in one of your Emacs startup �les.

218 GNU Octave

A common problem is that the

h

RET

i

key does not indent the line to where the new

text should go after inserting the newline. This is because the standard Emacs convention

is that

h

RET

i

(aka C-m) just adds a newline, whereas

h

LFD

i

(aka C-j) adds a newline and

indents it. This is particularly inconvenient for users with keyboards which do not have a

special

h

LFD

i

key at all; in such cases, it is typically more convenient to use

h

RET

i

as the

h

LFD

i

key (rather than typing C-j).

You can make

h

RET

i

do this by adding

(define-key octave-mode-map "\C-m"

'octave-reindent-then-newline-and-indent)

to one of your Emacs startup �les. Another, more generally applicable solution is

(defun RET-behaves-as-LFD ()

(let ((x (key-binding "\C-j")))

(local-set-key "\C-m" x)))

(add-hook 'octave-mode-hook 'RET-behaves-as-LFD)

(this works for all modes by adding to the startup hooks, without having to know the

particular binding of

h

RET

i

in that mode!). Similar considerations apply for using M-

h

RET

i

as M-

h

LFD

i

. As Barry A. Warsaw <bwarsaw@cnri.reston.va.us> says in the documentation

for his cc-mode, \This is a very common question. :-) If you want this to be the default

behavior, don't lobby me, lobby RMS!"

The following variables can be used to customize Octave mode.

octave-auto-newline

Non-nil means auto-insert a newline and indent after semicolons are typed.

The default value is nil.

octave-blink-matching-block

Non-nil means show matching begin of block when inserting a space, newline

or `;' after an else or end keyword. Default is t. This is an extremely useful

feature for automatically verifying that the keywords match|if they don't, an

error message is displayed.

octave-block-offset

Extra indentation applied to statements in block structures. Default is 2.

octave-continuation-offset

Extra indentation applied to Octave continuation lines. Default is 4.

octave-continuation-string

String used for Octave continuation lines. Normally `\'.

octave-mode-startup-message

If t (default), a startup message is displayed when Octave mode is called.

If Font Lock mode is enabled, Octave mode will display

� strings in font-lock-string-face

� comments in font-lock-comment-face

� the Octave reserved words (such as all block keywords) and the text functions (such as

`cd' or `who') which are also reserved using font-lock-keyword-face

Appendix D: Using Emacs With Octave 219

� the builtin operators (`&&', `<>', : : :) using font-lock-reference-face

� the builtin variables (such as `prefer_column_vectors', `NaN' or `LOADPATH') in font-

lock-variable-name-face

� and the function names in function declarations in font-lock-function-name-face.

There is also rudimentary support for Imenu (currently, function names can be indexed).

Customization of Octave mode can be performed by modi�cation of the variable octave-

mode-hook. It the value of this variable is non-nil, turning on Octave mode calls its value.

If you discover a problem with Octave mode, you can conveniently send a bug report

using C-c C-b (octave-submit-bug-report). This automatically sets up a mail bu�er

with version information already added. You just need to add a description of the problem,

including a reproducible test case and send the message.

D.3 Running Octave From Within Emacs

The package `octave' provides commands for running an inferior Octave process in a

special Emacs bu�er. Use

M-x run-octave

to directly start an inferior Octave process. If Emacs does not know about this command,

add the line

(autoload 'run-octave "octave-inf" nil t)

to your `.emacs' �le.

This will start Octave in a special bu�er the name of which is speci�ed by the variable

inferior-octave-buffer and defaults to "*Inferior Octave*". From within this bu�er,

you can interact with the inferior Octave process `as usual', i.e., by entering Octave com-

mands at the prompt. The bu�er is in Inferior Octave mode, which is derived from the

standard Comint mode, a major mode for interacting with an inferior interpreter. See the

documentation for comint-mode for more details, and use C-h b to �nd out about available

special keybindings.

You can also communicate with an inferior Octave process from within �les with Octave

code (i.e., bu�ers in Octave mode), using the following commands.

C-c i l Send the current line to the inferior Octave process (octave-send-line). With

positive pre�x argument N, send that many lines. If octave-send-line-auto-

forward is non-nil, go to the next unsent code line.

C-c i b Send the current block to the inferior Octave process (octave-send-block).

C-c i f Send the current function to the inferior Octave process (octave-send-defun).

C-c i r Send the region to the inferior Octave process (octave-send-region).

C-c i s Make sure that `inferior-octave-bu�er' is displayed (octave-show-process-

buffer).

C-c i h Delete all windows that display the inferior Octave bu�er (octave-hide-

process-buffer).

C-c i k Kill the inferior Octave process and its bu�er (octave-kill-process).

220 GNU Octave

The e�ect of the commands which send code to the Octave process can be customized

by the following variables.

octave-send-echo-input

Non-nil means echo input sent to the inferior Octave process. Default is t.

octave-send-show-buffer

Non-nil means display the bu�er running the Octave process after sending a

command (but without selecting it). Default is t.

If you send code and there is no inferior Octave process yet, it will be started automat-

ically.

The startup of the inferior Octave process is highly customizable. The variable

inferior-octave-startup-args can be used for specifying command lines arguments

to be passed to Octave on startup as a list of strings. For example, to suppress the

startup message and use `traditional' mode, set this to '("-q" "--traditional"). You

can also specify a startup �le of Octave commands to be loaded on startup; note that

these commands will not produce any visible output in the process bu�er. Which �le to

use is controlled by the variable inferior-octave-startup-file. If this is nil, the �le

`~/.emacs-octave' is used if it exists.

And �nally, inferior-octave-mode-hook is run after starting the process and putting

its bu�er into Inferior Octave mode. Hence, if you like the up and down arrow keys to

behave in the interaction bu�er as in the shell, and you want this bu�er to use nice colors,

add

(add-hook 'inferior-octave-mode-hook

(lambda ()

(turn-on-font-lock)

(define-key inferior-octave-mode-map [up]

'comint-previous-input)

(define-key inferior-octave-mode-map [down]

'comint-next-input)))

to your `.emacs' �le. You could also swap the roles of C-a (beginning-of-line) and C-c

C-a (comint-bol) using this hook.

Note: If you set your Octave prompts to something di�erent from the defaults,

make sure that inferior-octave-prompt matches them. Otherwise, nothing

will work, because Emacs will have no idea when Octave is waiting for input,

or done sending output.

D.4 Using the Emacs Info Reader for Octave

You can also have Octave's help -i command invoke the Emacs Info reader. To do

this, you'll need `gnuserv', which can be retrieved from any GNU Emacs Lisp Code Direc-

tory archive, e.g. `ftp://ftp.cis.ohio-state.edu/pub/gnu/emacs/elisp-archive', in

the `packages' subdirectory. The alpha version of an enhanced version of gnuserv is avail-

able at `ftp://ftp.wellfleet.com/netman/psmith/emacs/gnuserv-2.1alpha.tar.gz'.

If `gnuserv' is installed, add the lines

Appendix D: Using Emacs With Octave 221

(autoload 'octave-help "octave-hlp" nil t)

(require 'gnuserv)

(gnuserv-start)

to your `.emacs' �le.

You can use either `plain' Emacs Info or the function octave-help as your Octave

info reader (for `help -i'). In the former case, set the Octave variable INFO_PROGRAM to

"info-emacs-info". The latter is perhaps more attractive because it allows to look up

keys in the indices of several info �les related to Octave (provided that the Emacs variable

octave-help-files is set correctly). In this case, set INFO_PROGRAM to "info-emacs-

octave-help".

If you use Octave from within Emacs, these settings are best done in the startup

�le `~/.emacs-octave' (or the �le pointed to by the Emacs variable inferior-octave-

startup-file).

222 GNU Octave

Chapter 30: Grammar 223

30 Grammar

Someday I hope to expand this to include a semi-formal description of Octave's language.

30.1 Keywords

The following identi�ers are keywords, and may not be used as variable or function

names:

all_va_args endwhile

break for

case function

catch global

continue gplot

else gsplot

elseif if

end otherwise

end_try_catch return

end_unwind_protect switch

endfor try

endfunction unwind_protect

endif unwind_protect_cleanup

endswitch while

The following command-like functions are also speical. They may be used as simple

variable names, but not as formal parameters for functions, or as the names of structure

variables. Failed assignments leave them unde�ned (you can recover the orginal de�nition

as a function using clear).

casesen echo load show

cd edit_history ls type

chdir format more which

clear help run_history who

diary history save whos

dir hold set

224 GNU Octave

Appendix E: GNU GENERAL PUBLIC LICENSE 225

Appendix E GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright
c
 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

E.1 Preamble

The licenses for most software are designed to take away your freedom to share and

change it. By contrast, the GNU General Public License is intended to guarantee your

freedom to share and change free software|to make sure the software is free for all its users.

This General Public License applies to most of the Free Software Foundation's software

and to any other program whose authors commit to using it. (Some other Free Software

Foundation software is covered by the GNU Library General Public License instead.) You

can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General

Public Licenses are designed to make sure that you have the freedom to distribute copies

of free software (and charge for this service if you wish), that you receive source code or

can get it if you want it, that you can change the software or use pieces of it in new free

programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you

these rights or to ask you to surrender the rights. These restrictions translate to certain

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you

must give the recipients all the rights that you have. You must make sure that they, too,

receive or can get the source code. And you must show them these terms so they know

their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this

license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone

understands that there is no warranty for this free software. If the software is modi�ed by

someone else and passed on, we want its recipients to know that what they have is not the

original, so that any problems introduced by others will not reect on the original authors'

reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid

the danger that redistributors of a free program will individually obtain patent licenses, in

e�ect making the program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

226 GNU Octave

E.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General

Public License. The \Program", below, refers to any such program or work, and a

\work based on the Program" means either the Program or any derivative work under

copyright law: that is to say, a work containing the Program or a portion of it, either

verbatim or with modi�cations and/or translated into another language. (Hereinafter,

translation is included without limitation in the term \modi�cation".) Each licensee is

addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this

License; they are outside its scope. The act of running the Program is not restricted,

and the output from the Program is covered only if its contents constitute a work based

on the Program (independent of having been made by running the Program). Whether

that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you

receive it, in any medium, provided that you conspicuously and appropriately publish

on each copy an appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any warranty; and give

any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your

option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modi�cations or work under

the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that you

changed the �les and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part

contains or is derived from the Program or any part thereof, to be licensed as a

whole at no charge to all third parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively when run, you

must cause it, when started running for such interactive use in the most ordinary

way, to print or display an announcement including an appropriate copyright notice

and a notice that there is no warranty (or else, saying that you provide a warranty)

and that users may redistribute the program under these conditions, and telling

the user how to view a copy of this License. (Exception: if the Program itself is

interactive but does not normally print such an announcement, your work based

on the Program is not required to print an announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections

of that work are not derived from the Program, and can be reasonably considered

independent and separate works in themselves, then this License, and its terms, do not

apply to those sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based on the Program,

the distribution of the whole must be on the terms of this License, whose permissions

Appendix E: GNU GENERAL PUBLIC LICENSE 227

for other licensees extend to the entire whole, and thus to each and every part regardless

of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to

work written entirely by you; rather, the intent is to exercise the right to control the

distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the

Program (or with a work based on the Program) on a volume of a storage or distribution

medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)

in object code or executable form under the terms of Sections 1 and 2 above provided

that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,

which must be distributed under the terms of Sections 1 and 2 above on a medium

customarily used for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any third

party, for a charge no more than your cost of physically performing source distri-

bution, a complete machine-readable copy of the corresponding source code, to be

distributed under the terms of Sections 1 and 2 above on a medium customarily

used for software interchange; or,

c. Accompany it with the information you received as to the o�er to distribute cor-

responding source code. (This alternative is allowed only for noncommercial dis-

tribution and only if you received the program in object code or executable form

with such an o�er, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modi�-

cations to it. For an executable work, complete source code means all the source code

for all modules it contains, plus any associated interface de�nition �les, plus the scripts

used to control compilation and installation of the executable. However, as a spe-

cial exception, the source code distributed need not include anything that is normally

distributed (in either source or binary form) with the major components (compiler,

kernel, and so on) of the operating system on which the executable runs, unless that

component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from

a designated place, then o�ering equivalent access to copy the source code from the

same place counts as distribution of the source code, even though third parties are not

compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly

provided under this License. Any attempt otherwise to copy, modify, sublicense or

distribute the Program is void, and will automatically terminate your rights under this

License. However, parties who have received copies, or rights, from you under this

License will not have their licenses terminated so long as such parties remain in full

compliance.

5. You are not required to accept this License, since you have not signed it. However,

nothing else grants you permission to modify or distribute the Program or its derivative

works. These actions are prohibited by law if you do not accept this License. Therefore,

228 GNU Octave

by modifying or distributing the Program (or any work based on the Program), you

indicate your acceptance of this License to do so, and all its terms and conditions for

copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the

recipient automatically receives a license from the original licensor to copy, distribute

or modify the Program subject to these terms and conditions. You may not impose

any further restrictions on the recipients' exercise of the rights granted herein. You are

not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by

court order, agreement or otherwise) that contradict the conditions of this License, they

do not excuse you from the conditions of this License. If you cannot distribute so as

to satisfy simultaneously your obligations under this License and any other pertinent

obligations, then as a consequence you may not distribute the Program at all. For

example, if a patent license would not permit royalty-free redistribution of the Program

by all those who receive copies directly or indirectly through you, then the only way

you could satisfy both it and this License would be to refrain entirely from distribution

of the Program.

If any portion of this section is held invalid or unenforceable under any particular

circumstance, the balance of the section is intended to apply and the section as a

whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other

property right claims or to contest validity of any such claims; this section has the

sole purpose of protecting the integrity of the free software distribution system, which

is implemented by public license practices. Many people have made generous contri-

butions to the wide range of software distributed through that system in reliance on

consistent application of that system; it is up to the author/donor to decide if he or

she is willing to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence

of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the

Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries

not thus excluded. In such case, this License incorporates the limitation as if written

in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the

present version, but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a

version number of this License which applies to it and \any later version", you have

the option of following the terms and conditions either of that version or of any later

version published by the Free Software Foundation. If the Program does not specify a

Appendix E: GNU GENERAL PUBLIC LICENSE 229

version number of this License, you may choose any version ever published by the Free

Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-

bution conditions are di�erent, write to the author to ask for permission. For software

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-

dation; we sometimes make exceptions for this. Our decision will be guided by the two

goals of preserving the free status of all derivatives of our free software and of promoting

the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-

CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \AS

IS" WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THEQUALITY AND PERFORMANCEOF THE PROGRAM IS WITH

YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST

OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED

ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF

THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE

PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

END OF TERMS AND CONDITIONS

230 GNU Octave

E.3 Appendix: How to Apply These Terms to Your New

Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone can

redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the

start of each source �le to most e�ectively convey the exclusion of warranty; and each �le

should have at least the \copyright" line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an

interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type `show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c'

for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of

the General Public License. Of course, the commands you use may be called something

other than `show w' and `show c'; they could even be mouse-clicks or menu items|whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,

to sign a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the

names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

`Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

Appendix E: GNU GENERAL PUBLIC LICENSE 231

This General Public License does not permit incorporating your program into proprietary

programs. If your program is a subroutine library, you may consider it more useful to permit

linking proprietary applications with the library. If this is what you want to do, use the

GNU Library General Public License instead of this License.

232 GNU Octave

Concept Index 233

Concept Index

#

`#' . 26

`#!' . 25

%

`%' . 26

-

--braindead . 14

--debug . 13

--echo-commands .. 13

--exec-path path . 13

--help .. 13

--info-file �lename . 13

--info-program program . 13

--interactive .. 14

--no-init-file . 14

--no-line-editing. 14

--no-site-file . 14

--norc .. 14

--path path . 14

--quiet . 14

--silent .. 14

--traditional .. 14

--verbose .. 14

--version .. 15

-? . 13

-d . 13

-f . 14

-h . 13

-i . 14

-p path . 14

-q . 14

-v . 15

-V . 14

-x . 13

.

... 85, 86

... continuation marker . 79

.octaverc .. 16

~

~/.octaverc . 16

\

\ continuation marker . 79

A

acknowledgements . 1

addition . 60

and operator . 62

answers, incorrect . 202, 204

any key . 8

arguments in function call . 57

arithmetic operators . 60

assignment expressions . 64

assignment operators . 64

B

body of a loop . 74

boolean expressions . 62

boolean operators . 62

break statement . 77

bug criteria. 202

bug report mailing lists . 203

bugs . 202

bugs, investigating . 204

bugs, known . 201

bugs, reporting . 203

built-in data types . 29

built-in function . 10

C

case statement . 73

catch . 79

character strings . 29, 37

Cholesky factorization . 145

clearing the screen . 19

coding standards . 195

command and ouput logs . 23

command completion . 20

command descriptions . 10

command echoing . 23

command history . 20

command options . 13

command-line editing . 18

comments . 26

comparison expressions . 61

complex-conjugate transpose 60

continuation lines . 79

234 GNU Octave

continue statement . 78

contributing to Octave . 3

contributors . 1

conversion speci�cations (printf) 105

conversion speci�cations (scanf) 111

copyright . 223

core dump. 202

customizing the prompt. 22

D

DAE . 155

data structures. 29, 43

data types . 29

data types, built-in . 29

data types, user-de�ned . 30

decrement operator . 65

de�ning functions . 81

description format . 9

diary of commands and output. 23

Di�erential Equations . 155

di�s, submitting . 205

distribution of Octave. 3

division . 60

documentation notation. 8

documenting Octave programs 26

dynamic linking . 91

E

echoing executing commands. 23

editing the command line . 18

element-by-element evaluation 62

else statement . 71

elseif statement . 71

end statement . 71

end_try_catch .. 79

end_unwind_protect . 78

endfor statement . 75

endfunction statement . 81

endif statement . 71

endswitch statement . 73

endwhile statement . 74

equality operator . 61

equality, tests for . 61

equations, nonlinear . 151

erroneous messages . 202

erroneous results . 202, 204

error message notation . 9

error messages . 24

error messages, incorrect . 202

escape sequence notation . 37

evaluation notation . 8

executable scripts . 25

execution speed . 195

exiting octave . 5, 16

exponentiation . 60

expression, range . 35

expressions . 55

expressions, assignment . 64

expressions, boolean . 62

expressions, comparison. 61

expressions, logical . 62

F

factorial function . 59

fatal signal . 202

ag character (printf) .. 107

ag character (scanf) . 111

ying high and fast . 47

fonts . 8

for statement . 75

Fordyce, A. P. 70

Frobenius norm . 144

function descriptions . 9

function �le . 10, 88

function statement . 81

functions, user-de�ned . 81

funding Octave development . 3

G

getting a good job . 47

global statement . 47

global variables . 47

grammar rules . 223

graphics . 119

greater than operator . 61

H

header comments . 197

help, on-line . 17

help, where to �nd . 205

Hermitian operator . 60

Hessenberg decomposition . 145

history . 1

history of commands. 20

I

if statement . 71

improving Octave . 202, 205

incorrect error messages . 202

incorrect output . 202, 204

Concept Index 235

incorrect results . 202, 204

increment operator . 65

in�nity norm . 144

initialization . 15

input conversions, for scanf 112

input history . 20

installation trouble . 201

installing Octave . 207

introduction . 5

invalid input . 202

J

job hunting . 47

K

keywords . 223

known causes of trouble . 201

L

language de�nition . 223

less than operator . 61

loadable function . 10

logging commands and output 23

logical expressions . 62

logical operators . 62

loop . 74

looping over structure elements 76

LP . 157

LU decomposition . 145

lvalue . 64

M

mapping function . 10

matching failure, in scanf . 111

matrices . 31

matrix multiplication . 60

maximum �eld width (scanf) 112

messages, error . 24

minimum �eld width (printf) 107

multiplication . 60

N

negation . 60

NLP . 157

nonlinear equations . 151

nonlinear programming . 157

not operator . 62

numeric constant. 29, 31

numeric value . 29, 31

O

Octave command options . 13

ODE . 155

on-line help. 17

operator precedence . 66

operators, arithmetic . 60

operators, assignment . 64

operators, boolean . 62

operators, decrement . 65

operators, increment . 65

operators, logical . 62

operators, relational . 61

optimization . 157

options, Octave command . 13

or operator . 62

oregonator . 155

otherwise statement . 73

output conversions, for printf 107

P

partial fraction expansion . 164

patches, submitting . 205

plotting . 119

precision (printf) . 107

printing notation . 9

program, self contained . 25

programs . 26

prompt customization . 22

Q

QP . 157

QR factorization . 146

quadratic programming . 157

quitting octave . 5, 16

quotient . 60

R

range expressions . 35

relational operators . 61

reporting bugs . 202, 203

results, incorrect . 202, 204

S

Schur decomposition . 147

script �les . 81

scripts . 25

self contained programs . 25

short-circuit evaluation . 63

side e�ect . 64

singular value decomposition. 147

236 GNU Octave

speedups . 195

standards of coding style . 195

startup . 15

startup �les . 15

statements . 71

strings . 29, 37

structure elements, looping over 76

structures . 29, 43

submitting di�s . 205

submitting patches . 205

subtraction . 60

suggestions . 202

switch statement . 73

T

tests for equality. 61

tips . 195

transpose . 60

transpose, complex-conjugate 60

troubleshooting . 201

try statement . 79

U

unary minus . 60

unde�ned behavior . 202

unde�ned function value . 202

unwind_protect statement. 78

unwind_protect_cleanup .. 78

use of comments . 26

user-de�ned data types . 30

user-de�ned functions . 81

user-de�ned variables . 47

V

variable descriptions . 11

Variable-length argument lists 85

Variable-length return lists. 86

variables, global . 47

variables, user-de�ned . 47

W

warranty . 223

while statement . 74

wrong answers . 202, 204

Variable Index 237

Variable Index

A

all_va_args . 86

ans . 98

argv . 15

automatic_replot .. 51, 118

B

beep_on_error . 51, 96

C

completion_append_char 20, 51

D

default_eval_print_flag 51, 69

default_return_value . 51, 85

default_save_format . 51, 102

define_all_return_values 51, 85

do_fortran_indexing.. 51, 55

do_what_i_mean_not_what_i_say 11

E

e . 141

echo_executing_commands.. 24

EDITOR . 22, 50, 54

empty_list_elements_ok 35, 51

eps . 141

error_text. 95

EXEC_PATH .. 50, 188

F

F_DUPFD . 190

F_GETFD . 190

F_GETFL . 190

F_SETFD . 190

F_SETFL . 190

G

gnuplot_binary .. 51, 124

gnuplot_has_frames . 124

gnuplot_has_multiplot .. 124

H

history_file. 22, 51

history_size. 22, 52

I

i . 141

I . 141

ignore_function_time_stamp. 52, 89

IMAGEPATH .. 176

implicit_str_to_num_ok 41, 52

inf . 141

Inf . 141

INFO_FILE .. 17, 50

INFO_PROGRAM .. 17, 50

J

j . 141

J . 141

L

LOADPATH . 50, 89

N

nan . 141

NaN . 141

nargin. 15, 83

nargout . 85

O

O_APPEND .. 190

O_ASYNC . 190

O_NONBLOCK . 190

O_RDONLY .. 190

O_RDWR . 190

O_SYNC . 190

O_WRONLY .. 190

OCTAVE_EXEC_PATH. 54

OCTAVE_HISTFILE .. 54

OCTAVE_HISTSIZE .. 54

OCTAVE_HOME . 50

OCTAVE_INFO_FILE. 54

OCTAVE_INFO_PROGRAM .. 54

OCTAVE_PATH . 54

OCTAVE_VERSION .. 193

ok_to_lose_imaginary_part 52

output_max_field_width 33, 52

output_precision .. 33, 52

P

page_output_immediately. 97

238 GNU Octave

page_screen_output .. 52, 97

PAGER . 50, 97

pi . 141

prefer_column_vectors 52, 56

prefer_zero_one_indexing 56

print_answer_id_name . 52, 99

print_empty_dimensions 34, 52

program_invocation_name.. 15

program_name . 15

propagate_empty_matrices 35

PS1 . 23, 50

PS2 . 23, 51

PS4 . 23, 51

PWD . 191

R

realmax . 141

realmin . 141

resize_on_range_error 52, 57

return .. 87

return_last_computed_value.. 52, 88

S

save_precision .. 52, 102

saving_history . 22, 53

SEEK_CUR .. 116

SEEK_END .. 116

SEEK_SET .. 116

silent_functions .. 53, 83

split_long_rows .. 34, 53

stderr . 103

stdin . 103

stdout . 103

string_fill_char. 38

struct_levels_to_print 44, 53

suppress_verbose_help_message 17, 53

T

treat_neg_dim_as_zero 53, 133

W

warn_assign_as_truth_value. 53, 73

warn_comma_in_global_decl 48, 53

warn_divide_by_zero .. 53, 61

warn_function_name_clash 53, 89

warn_missing_semicolon .. 83

whitespace_in_literal_matrix 32, 53

Function Index 239

Function Index

A

abcddim . 167

abs . 137

acos . 138

acosh . 138

acot . 138

acoth . 138

acsc . 138

acsch . 138

all . 127

angle . 137

any . 127

are . 167

arg . 137

asctime . 180

asec . 138

asech . 138

asin . 138

asinh . 138

atan . 138

atan2 . 138

atanh . 138

atexit .. 16

axis . 121

B

balance . 143

bar . 121

beta . 139

betai . 139

bin2dec . 40

bincoeff .. 139

blanks .. 38

bottom_title . 126

bug_report .. 202, 203

C

c2d . 167

cd . 10, 191

ceil . 135

chdir. 10, 191

chol . 145

clc . 19

clear . 48

clearplot.. 121

clg . 121

clock . 182

closeplot .. 121

colloc . 154

colormap .. 175

columns . 30

common_size . 127

commutation_matrix . 140

compan . 163

complement . 161

completion_matches . 20

computer .. 193

cond . 143

conj . 137

contour . 122

conv . 163

corrcoef .. 159

cos . 137

cosh . 138

cot . 137

coth . 138

cov . 159

cputime . 183

create_set . 161

cross . 140

csc . 137

csch . 138

ctime . 179

cumprod . 139

cumsum . 139

D

dare . 168

dassl . 156

dassl_options . 156

date . 182

deblank . 39

dec2bin . 40

dec2hex . 40

deconv . 163

det . 143

detrend . 173

dgram . 168

diag . 133

diary . 23

diff . 128

dir . 191

disp . 98

dlqe . 168

240 GNU Octave

dlqr . 169

dlyap . 169

document .. 49

dup2 . 189

duplication_matrix . 140

E

echo . 23

edit_history . 21

eig . 143

endgrent .. 193

endpwent .. 192

erf . 139

erfc . 139

erfinv . 140

error . 95

etime . 182

eval . 69

exec . 189

exist . 49

exit . 16

exp . 135

expm . 148

eye . 131

F

fclose . 104

fcntl . 189

feof . 115

ferror . 116

feval . 69

fflush .. 98

fft . 173

fft2 . 173

fftconv . 173

fftfilt . 174

fgetl . 104

fgets . 105

figure . 124

file_in_path . 186

filter . 174

find . 128

findstr . 39

finite . 128

fix . 135

fliplr . 129

flipud . 129

floor . 135

fnmatch . 186

foo . 9

fopen . 103

fork . 188

format . 98

fprintf . 105

fputs . 104

fread . 113

freport . 116

freqz . 174

frewind . 116

fscanf . 110

fseek . 116

fsolve . 151

fsolve_options .. 151

ftell . 116

fwrite . 115

G

gamma . 140

gammai . 140

gammaln . 140

gcd . 135

getegid . 190

getenv . 191

geteuid . 190

getgid . 190

getgrent .. 192

getgrgid .. 192

getgrnam .. 193

getpgrp . 190

getpid . 190

getppid . 190

getpwent .. 192

getpwnam .. 192

getpwuid .. 192

getrusage .. 193

getuid . 190

givens . 144

glob . 186

gls . 157

gmtime . 179

gplot . 117

gray . 175

gray2ind .. 175

grid . 124

gset . 118

gshow . 118

gsplot . 123

H

hadamard .. 134

Function Index 241

hankel . 134

help . 17

hess . 145

hex2dec . 40

hilb . 134

hist . 122

history . 21

hold . 120

home . 19

I

ifft . 173

ifft2 . 173

imag . 137

image . 175

imagesc . 175

imshow . 175

ind2gray .. 176

ind2rgb . 176

index . 39

input . 100

int2str . 38

intersection . 161

inv . 144

inverse . 144

invhilb . 134

is_controllable .. 169

is_global .. 48

is_leap_year . 183

is_matrix .. 36

is_observable .. 169

is_scalar .. 36

is_square .. 36

is_struct .. 45

is_symmetric . 36

is_vector .. 36

isalnum . 41

isalpha . 41

isascii . 41

iscntrl . 42

isdigit . 42

isempty . 30

isgraph . 42

ishold . 121

isieee . 193

isinf . 128

islower . 42

isnan . 128

isprint . 42

ispunct . 42

isspace . 42

isstr . 38

isupper . 42

isxdigit .. 42

K

kbhit . 101

keyboard .. 100

kron . 148

kurtosis .. 159

L

lcm . 135

length . 30

lgamma . 140

lin2mu . 177

linspace .. 133

load . 102

loadaudio .. 177

loadimage .. 176

localtime .. 180

log . 135

log10 . 136

log2 . 136

loglog . 122

logm . 148

logspace .. 133

lqe . 169

lqr . 170

ls . 191

lsode . 155

lsode_options . 156

lstat . 184

lu . 145

lyap . 170

M

mahalanobis . 160

max . 136

mean . 159

median . 159

menu . 100

mesh . 123

meshdom . 123

min . 136

mkdir . 184

mkfifo . 184

mktime . 180

more . 97

mplot . 124

242 GNU Octave

mu2lin . 177

multiplot.. 125

N

nargchk . 85

newtroot .. 70

nextpow2 .. 136

norm . 144

ntsc2rgb .. 176

null . 144

num2str . 38

O

ocean . 176

octave_config_info . 193

ols . 157

oneplot . 125

ones . 131

orth . 144

P

pause . 183

pclose . 187

perror .. 96

pinv . 145

pipe . 189

playaudio.. 177

plot . 119

plot_border . 125

polar . 122

poly . 163

polyderiv.. 163

polyfit . 163

polyinteg.. 164

polyreduce . 164

polyval . 164

polyvalm .. 164

popen . 187

popen2 . 188

pow2 . 136

printf . 105

prod . 138

purge_tmp_files .. 121

putenv . 191

puts . 104

pwd . 191

Q

qr . 146

quad . 153

quad_options .. 153

quit . 16

qzhess . 149

qzval . 149

R

rand . 132

randn . 132

rank . 145

readdir . 184

real . 137

record . 178

rem . 136

rename . 184

replot . 118

reshape . 129

residue . 164

rgb2ind . 176

rgb2ntsc .. 176

rindex . 39

rmdir . 184

roots . 165

rot90 . 129

round . 136

rows . 30

run_history . 22

S

save . 101

saveaudio .. 177

saveimage .. 176

scanf . 111

schur . 147

sec . 137

sech . 138

semilogx .. 122

semilogy .. 122

set . 118

setaudio .. 178

setgrent .. 193

setpwent .. 192

setstr . 38

shg . 118

shift . 130

show . 118

sign . 136

sin . 137

sinc . 174

sinh . 138

size . 30

Function Index 243

skewness .. 160

sleep . 183

sort . 130

source .. 91

split . 39

sprintf . 105

sqrt . 136

sqrtm . 148

sscanf . 110

stairs . 122

stat . 184

std . 159

str2mat . 38

str2num . 40

strcat .. 38

strcmp .. 39

strerror .. 96

strftime .. 180

strrep .. 39

struct_contains .. 45

struct_elements .. 45

subplot . 125

substr .. 40

subwindow.. 125

sum . 138

sumsq . 139

svd . 147

syl . 149

system . 187

T

tan . 137

tanh . 138

tic . 183

tilde_expand . 186

time . 179

title . 124

tmpnam . 115

toascii . 40

toc . 183

toeplitz .. 134

tolower . 40

top_title .. 126

toupper . 41

trace . 145

tril . 130

triu . 130

type . 50

tzero . 171

U

umask . 184

undo_string_escapes .. 41

union . 161

unlink . 184

usage . 96

usleep . 184

V

va_arg . 86

va_start .. 85

vander . 134

vec . 131

vech . 131

version . 193

vr_val . 87

W

waitpid . 189

warning . 96

which . 50

who . 49

whos . 49

X

xlabel . 124

xor . 137

Y

ylabel . 124

Z

zeros . 132

zlabel . 124

244 GNU Octave

Operator Index 245

Operator Index

!

! . 62

!= . 61

&

& . 62

&&. 63

'

' . 29, 37, 61

(

(. 55

)

) . 55

*

* . 60

** . 60

,

, . 31

-

- . 60

-- . 66

.

.' . 61

.* . 60

.** . 60

./ . 60

.+ . 60

.^ . 60

.\ . 60

/

/ . 60

:

: . 35

;

; . 31

=

= . 64

==. 61

[

[. 31

]

] . 31

"

" . 29, 37

|

| . 62

|| . 63

~

~ . 62

~= . 61

+

+ . 60

++ . 66

>

> . 61

>= . 61

^

^ . 60

\

\ . 60

<

< . 61

<= . 61

<> . 61

246 GNU Octave

i

Table of Contents

Preface . 1

Acknowledgements . 1

How You Can Contribute to Octave . 3

Distribution . 3

1 A Brief Introduction to Octave 5

1.1 Running Octave . 5

1.2 Simple Examples . 5

Creating a Matrix . 5

Matrix Arithmetic . 6

Solving Linear Equations . 6

Integrating Di�erential Equations . 6

Producing Graphical Output . 7

Editing What You Have Typed . 7

Getting Help. 8

1.3 Conventions . 8

1.3.1 Fonts . 8

1.3.2 Evaluation Notation . 8

1.3.3 Printing Notation . 9

1.3.4 Error Messages . 9

1.3.5 Format of Descriptions . 9

1.3.5.1 A Sample Function Description 9

1.3.5.2 A Sample Command Description 10

1.3.5.3 A Sample Variable Description 11

2 Getting Started. 13

2.1 Invoking Octave . 13

2.1.1 Command Line Options . 13

2.1.2 Startup Files . 15

2.2 Quitting Octave . 16

2.3 Commands for Getting Help . 17

2.4 Command Line Editing . 18

2.4.1 Cursor Motion . 18

2.4.2 Killing and Yanking . 19

2.4.3 Commands For Changing Text 19

2.4.4 Letting Readline Type For You 20

2.4.5 Commands For Manipulating The History 20

2.4.6 Customizing the Prompt . 22

2.4.7 Diary and Echo Commands . 23

2.5 How Octave Reports Errors . 24

2.6 Executable Octave Programs . 25

2.7 Comments in Octave Programs . 26

ii GNU Octave

3 Data Types . 29

3.1 Built-in Data Types . 29

3.1.1 Numeric Objects . 29

3.1.2 String Objects . 29

3.1.3 Data Structure Objects . 29

3.2 User-de�ned Data Types . 30

3.3 Object Sizes . 30

4 Numeric Data Types . 31

4.1 Matrices . 31

4.1.1 Empty Matrices . 34

4.2 Ranges . 35

4.3 Predicates for Numeric Objects. 36

5 Strings . 37

5.1 Creating Strings . 38

5.2 Searching and Replacing . 39

5.3 String Conversions . 40

5.4 Character Class Functions . 41

6 Data Structures . 43

7 Variables . 47

7.1 Global Variables . 47

7.2 Status of Variables . 48

7.3 Summary of Built-in Variables . 50

7.4 Defaults from the Environment . 53

8 Expressions . 55

8.1 Index Expressions . 55

8.2 Calling Functions . 57

8.2.1 Call by Value . 58

8.2.2 Recursion . 59

8.3 Arithmetic Operators . 60

8.4 Comparison Operators . 61

8.5 Boolean Expressions . 62

8.5.1 Element-by-element Boolean Operators 62

8.5.2 Short-circuit Boolean Operators 63

8.6 Assignment Expressions . 64

8.7 Increment Operators . 65

8.8 Operator Precedence . 66

9 Evaluation . 69

iii

10 Statements . 71

10.1 The if Statement . 71

10.2 The switch Statement . 73

10.3 The while Statement . 74

10.4 The for Statement . 75

10.4.1 Looping Over Structure Elements 76

10.5 The break Statement . 77

10.6 The continue Statement . 78

10.7 The unwind protect Statement . 78

10.8 The try Statement . 79

10.9 Continuation Lines . 79

11 Functions and Script Files 81

11.1 De�ning Functions . 81

11.2 Multiple Return Values . 83

11.3 Variable-length Argument Lists . 85

11.4 Variable-length Return Lists . 86

11.5 Returning From a Function . 87

11.6 Function Files . 88

11.7 Script Files . 90

11.8 Dynamically Linked Functions . 91

11.9 Organization of Functions Distributed with Octave 94

12 Error Handling . 95

13 Input and Output . 97

13.1 Basic Input and Output . 98

13.1.1 Terminal Output . 98

13.1.2 Terminal Input . 100

13.1.3 Simple File I/O . 101

13.2 C-Style I/O Functions . 103

13.2.1 Opening and Closing Files 103

13.2.2 Simple Output . 104

13.2.3 Line-Oriented Input . 104

13.2.4 Formatted Output . 105

13.2.5 Output Conversion for Matrices 106

13.2.6 Output Conversion Syntax 106

13.2.7 Table of Output Conversions 107

13.2.8 Integer Conversions . 108

13.2.9 Floating-Point Conversions 109

13.2.10 Other Output Conversions 109

13.2.11 Formatted Input . 110

13.2.12 Input Conversion Syntax . 111

13.2.13 Table of Input Conversions 112

13.2.14 Numeric Input Conversions 113

13.2.15 String Input Conversions . 113

13.2.16 Binary I/O . 113

iv GNU Octave

13.2.17 Temporary Files . 115

13.2.18 End of File and Errors . 115

13.2.19 File Positioning . 116

14 Plotting . 117

14.1 Two-Dimensional Plotting . 117

14.2 Specialized Two-Dimensional Plots . 121

14.3 Three-Dimensional Plotting . 123

14.4 Plot Annotations . 124

14.5 Multiple Plots on One Page . 124

15 Matrix Manipulation 127

15.1 Finding Elements and Checking Conditions 127

15.2 Rearranging Matrices . 129

15.3 Special Utility Matrices . 131

15.4 Famous Matrices . 134

16 Arithmetic . 135

16.1 Utility Functions . 135

16.2 Complex Arithmetic . 137

16.3 Trigonometry . 137

16.4 Sums and Products . 138

16.5 Special Functions . 139

16.6 Mathematical Constants . 141

17 Linear Algebra . 143

17.1 Basic Matrix Functions . 143

17.2 Matrix Factorizations. 145

17.3 Functions of a Matrix . 148

18 Nonlinear Equations . 151

19 Quadrature . 153

19.1 Functions of One Variable . 153

19.2 Orthogonal Collocation . 154

20 Di�erential Equations 155

20.1 Ordinary Di�erential Equations . 155

20.2 Di�erential-Algebraic Equations . 156

21 Optimization . 157

21.1 Quadratic Programming . 157

21.2 Nonlinear Programming . 157

21.3 Linear Least Squares . 157

v

22 Statistics . 159

23 Sets . 161

24 Polynomial Manipulations. 163

25 Control Theory . 167

26 Signal Processing . 173

27 Image Processing . 175

28 Audio Processing . 177

29 System Utilities . 179

29.1 Timing Utilities . 179

29.2 Filesystem Utilities . 184

29.3 Controlling Subprocesses . 186

29.4 Process, Group, and User IDs . 190

29.5 Environment Variables . 191

29.6 Current Working Directory . 191

29.7 Password Database Functions . 191

29.8 Group Database Functions . 192

29.9 System Information . 193

Appendix A Tips and Standards 195

A.1 Writing Clean Octave Programs . 195

A.2 Tips for Making Code Run Faster. 195

A.3 Tips for Documentation Strings . 196

A.4 Tips on Writing Comments . 197

A.5 Conventional Headers for Octave Functions 197

Appendix B Known Causes of Trouble 201

B.1 Actual Bugs We Haven't Fixed Yet . 201

B.2 Reporting Bugs . 202

B.3 Have You Found a Bug? . 202

B.4 Where to Report Bugs . 203

B.5 How to Report Bugs . 203

B.6 Sending Patches for Octave . 205

B.7 How To Get Help with Octave . 205

vi GNU Octave

Appendix C Installing Octave 207

C.1 Notes . 209

C.2 Installation Problems . 209

C.3 Binary Distributions . 212

C.3.1 Installing Octave from a Binary Distribution . . . 212

C.3.2 Creating a Binary Distribution 213

Appendix D Using Emacs With Octave 215

D.1 Installing the Emacs Octave Package 215

D.2 Using Octave Mode . 215

D.3 Running Octave From Within Emacs. 219

D.4 Using the Emacs Info Reader for Octave 220

30 Grammar . 223

30.1 Keywords . 223

Appendix E GNU GENERAL PUBLIC

LICENSE . 225

E.1 Preamble. 225

E.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 226

E.3 Appendix: How to Apply These Terms to Your New

Programs . 230

Concept Index . 233

Variable Index . 237

Function Index . 239

Operator Index . 245

